In this current century,most industries are moving towards automation,where human intervention is dramatically reduced.This revolution leads to industrial revolution 4.0,which uses the Internet of Things(IoT)and wirel...In this current century,most industries are moving towards automation,where human intervention is dramatically reduced.This revolution leads to industrial revolution 4.0,which uses the Internet of Things(IoT)and wireless sensor networks(WSN).With its associated applications,this IoT device is used to compute the receivedWSN data from devices and transfer it to remote locations for assistance.In general,WSNs,the gateways are a long distance from the base station(BS)and are communicated through the gateways nearer to the BS.At the gateway,which is closer to the BS,energy drains faster because of the heavy load,which leads to energy issues around the BS.Since the sensors are battery-operated,either replacement or recharging of those sensor node batteries is not possible after it is deployed to their corresponding areas.In that situation,energy plays a vital role in sensor survival.Concerning reducing the network energy consumption and increasing the network lifetime,this paper proposed an efficient cluster head selection using Improved Social spider Optimization with a Rough Set(ISSRS)and routing path selection to reduce the network load using the Improved Grey wolf optimization(IGWO)approach.(i)Using ISSRS,the initial clusters are formed with the local nodes,and the cluster head is chosen.(ii)Load balancing through routing path selection using IGWO.The simulation results prove that the proposed optimization-based approaches efficiently reduce the energy through load balancing compared to existing systems in terms of energy efficiency,packet delivery ratio,network throughput,and packet loss percentage.展开更多
In this paper,we propose a new relational schema (R-schema) to XML schema translation algorithm, VQT, which analyzes the value cardinality and user query patterns and extracts the implicit referential integrities by u...In this paper,we propose a new relational schema (R-schema) to XML schema translation algorithm, VQT, which analyzes the value cardinality and user query patterns and extracts the implicit referential integrities by using the cardinality property of foreign key constraints between columns and the equi-join characteristic in user queries. The VQT algorithm can apply the extracted implied referential integrity relation information to the R-schema and create an XML schema as the final result. Therefore, the VQT algorithm prevents the R-schema from being incorrectly converted into the XML schema, and it richly and powerfully represents all the information in the R-schema by creating an XML schema as the translation result on behalf of the XML DTD.展开更多
With the rapid growth of the Web, the volume of information on the Web is increasing exponentially. However, information on the current Web is only understandable to humans, and this makes precise information retrieva...With the rapid growth of the Web, the volume of information on the Web is increasing exponentially. However, information on the current Web is only understandable to humans, and this makes precise information retrieval difficult. To solve this problem, the Semantic Web was proposed. We must use ontology languages that can assign data the semantics for realizing the Semantic Web. One of the representative ontology languages is the Web ontology language OWL, adopted as a recommen-dation by the World-Wide Web Consortium (W3C). OWL includes hierarchical structural information between classes or prop-erties. Therefore, an efficient OWL storage model that considers a hierarchical structure for effective information retrieval on the Semantic Web is required. In this paper we suggest an XPath-based OWL storage (XPOS) model, which includes hierarchical information between classes or properties in XPath form, and enables intuitive and effective information retrieval. Also, we show the comparative evaluation results for the performance of the XPOS model, Sesame, and the XML file system-based storage (XFSS) model, in terms of query processing and ontology updating.展开更多
基金This work was supported by the Collabo R&D between Industry,Academy,and Research Institute(S3250534)funded by the Ministry of SMEs and Startups(MSS,Korea)the Soonchunhyang University Research Fund。
文摘In this current century,most industries are moving towards automation,where human intervention is dramatically reduced.This revolution leads to industrial revolution 4.0,which uses the Internet of Things(IoT)and wireless sensor networks(WSN).With its associated applications,this IoT device is used to compute the receivedWSN data from devices and transfer it to remote locations for assistance.In general,WSNs,the gateways are a long distance from the base station(BS)and are communicated through the gateways nearer to the BS.At the gateway,which is closer to the BS,energy drains faster because of the heavy load,which leads to energy issues around the BS.Since the sensors are battery-operated,either replacement or recharging of those sensor node batteries is not possible after it is deployed to their corresponding areas.In that situation,energy plays a vital role in sensor survival.Concerning reducing the network energy consumption and increasing the network lifetime,this paper proposed an efficient cluster head selection using Improved Social spider Optimization with a Rough Set(ISSRS)and routing path selection to reduce the network load using the Improved Grey wolf optimization(IGWO)approach.(i)Using ISSRS,the initial clusters are formed with the local nodes,and the cluster head is chosen.(ii)Load balancing through routing path selection using IGWO.The simulation results prove that the proposed optimization-based approaches efficiently reduce the energy through load balancing compared to existing systems in terms of energy efficiency,packet delivery ratio,network throughput,and packet loss percentage.
基金Project supported by the 2nd Brain Korea Project
文摘In this paper,we propose a new relational schema (R-schema) to XML schema translation algorithm, VQT, which analyzes the value cardinality and user query patterns and extracts the implicit referential integrities by using the cardinality property of foreign key constraints between columns and the equi-join characteristic in user queries. The VQT algorithm can apply the extracted implied referential integrity relation information to the R-schema and create an XML schema as the final result. Therefore, the VQT algorithm prevents the R-schema from being incorrectly converted into the XML schema, and it richly and powerfully represents all the information in the R-schema by creating an XML schema as the translation result on behalf of the XML DTD.
文摘With the rapid growth of the Web, the volume of information on the Web is increasing exponentially. However, information on the current Web is only understandable to humans, and this makes precise information retrieval difficult. To solve this problem, the Semantic Web was proposed. We must use ontology languages that can assign data the semantics for realizing the Semantic Web. One of the representative ontology languages is the Web ontology language OWL, adopted as a recommen-dation by the World-Wide Web Consortium (W3C). OWL includes hierarchical structural information between classes or prop-erties. Therefore, an efficient OWL storage model that considers a hierarchical structure for effective information retrieval on the Semantic Web is required. In this paper we suggest an XPath-based OWL storage (XPOS) model, which includes hierarchical information between classes or properties in XPath form, and enables intuitive and effective information retrieval. Also, we show the comparative evaluation results for the performance of the XPOS model, Sesame, and the XML file system-based storage (XFSS) model, in terms of query processing and ontology updating.