<div style="text-align:justify;"> This paper introduces a Terahertz (THz) ellipsometer thickness measurement method based on Bessel beams. The ellipsometry method is used to measure the thickness of fi...<div style="text-align:justify;"> This paper introduces a Terahertz (THz) ellipsometer thickness measurement method based on Bessel beams. The ellipsometry method is used to measure the thickness of film in the THz band. And the thickness of film could be measured in the range of hundreds of microns which the measurement of film thickness by ellipsometer is usually only a few hundred nm in visible light. In addition, the photon energy of the THz-wave is very low and has little damage to the film. The THz Bessel beam has the characteristics of self-healing and diffraction-free. It can make the film thickness measurement within the diffraction-free distance, which is conducive to the flexibility of the ellipsometer system. We use a multi-frequency method to measure film with two-dimensional finite different time domain (FDTD) to numerical simulation analysis of light intensity successfully. </div>展开更多
In order to study stream sediments in the terahertz range, we have measured six reference stream sediment samples by terahertz time-domain spectroscopy (THz-TDS). We obtained the absorption coefficients and refractive...In order to study stream sediments in the terahertz range, we have measured six reference stream sediment samples by terahertz time-domain spectroscopy (THz-TDS). We obtained the absorption coefficients and refractive indexes. By analyzing the spectra, we got different drops in amplitude and delays in time. The absorption and refractive properties of samples changed with its components and types. In addition, we also found there was a nearly linear relationship between the absorption coefficient and the frequency. We calculated the slope value (K) of each sample by linear fitting, and find the K was corresponding to the contents of the samples. The results showed THz-TDS was an effective method to the analysis of stream sediments.展开更多
Background: Acclimatization to winter conditions is an essential prerequisite for the survival of small birds in the northern temperate zone.Changes in photoperiod,ambient temperature and food availability trigger sea...Background: Acclimatization to winter conditions is an essential prerequisite for the survival of small birds in the northern temperate zone.Changes in photoperiod,ambient temperature and food availability trigger seasonal physiological and behavioral acclimatization in many passerines.Seasonal trends in metabolic parameters are well known in avian populations from temperate environments;however,the physiological and biochemical mechanisms underlying these trends are incompletely understood.In this study,we used an integrative approach to measure variation in the thermogenic properties of the male Silky Starling(Sturnus sericeus) at different levels or organization,from the whole organism to the biochemical.We measured body mass(Mb),basal metabolic rate(BMR),energy budget,the mass of selected internal organs,state 4 respiration and cytochrome c oxidase(COX) activity in the heart,liver and muscle.Methods: Oxygen consumption was measured using an open-circuit respirometry system.The energy intake of the birds were then determined using an oxygen bomb calorimeter.Mitochondrial state 4 respiration and COX activity in heart,liver and pectoral muscle were measured with a Clark electrode.Results: The results suggest that acclimatization to winter conditions caused significant change in each of the measured variables,specifically,increases in Mb,organ mass,BMR,energy intake and cellular enzyme activity.Furthermore,BMR was positively correlated with body mass,energy intake,the mass of selected internal organs,state 4 respiration in the heart,liver and muscle,and COX activity in the heart and muscle.Conclusions: These results suggest that the male Silky Starling's enhanced basal thermogenesis under winter conditions is achieved by making a suite of adjustments from the whole organism to the biochemical level,and provide further evidence to support the notion that small birds have high phenotypic plasticity with respect to seasonal changes.展开更多
Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible e...Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible energy intake(DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls(Pycnonotus sinensis) caught in the wild at Wenzhou, China.Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.展开更多
Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we te...Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we tested the hypothesis that a small passerine,the Red-billed Leiothrix(Leiothrix lutea),can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.Methods:Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs(Leiothrix lutea)was investigated under warm(35℃),normal(25℃)or cold(15℃)ambient temperature conditions.Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome-c oxidase(COX)activity in liver,kidney heart and pectoral muscle were measured with a Clark electrode.Results:Birds acclimated to an ambient temperature of 15℃ for 4 weeks significantly increased their basal metabolic rate(BMR)compared to a control group kept at 25℃.Birds acclimated to 35℃ decreased their BMR,gross energy intake(GEI)and digestible energy intake(DEI).Furthermore,birds acclimated to 15℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase(COX)activity in their liver and pectoral muscle,compared to the 25℃ control group.Birds acclimated to 35℃ also displayed lower state-4 respiration and COX activity in the liver,heart and pectoral muscles,compared to those kept at 25℃.There was a positive correlation between BMR and state-4 respiration,and between BMR and COX activity,in all of the above organs except the liver and heart.Conclusions:Our study illustrates that the morphological,physiological,and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix,and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.展开更多
Background:Small birds in temperate habitats must either migrate,or adjust aspects of their morphology,physiology and behavior to cope with seasonal change in temperature and photoperiod.It is,however,difficult to acc...Background:Small birds in temperate habitats must either migrate,or adjust aspects of their morphology,physiology and behavior to cope with seasonal change in temperature and photoperiod.It is,however,difficult to accurately measure how seasonal changes in temperature and photoperiod affect physiological processes such as basal metabolic rate(BMR)and metabolic activity.To address this problem,we collected data in each month of the year on body mass(Mb)and BMR,and conducted a series of experiments to determine the effect of temperature and photoperiod on Mb,BMR and physiological markers of metabolic activity,in the Eurasian Tree Sparrow(Passer montanus).Methods:In one experiment,we measured monthly change in Mb and BMR in a captive group of birds over a year.In another experiment,we examined the effects of acclimating birds to two different temperatures,10 and 30℃,and a long and a short photoperiod(16 h light:8 h dark and 8 h light:16 h dark,respectively)for 4 weeks.Results:We found that these treatments induced sparrows to adjust their Mb and metabolic rate processes.Acclimation to 30℃for 4 weeks significantly decreased sparrows’Mb,BMR,and energy intake,including both gross energy intake and digestible energy intake,compared to birds acclimated to 10℃.The dry mass of the liver,kidneys and digestive tract of birds acclimated to 30℃also significantly decreased,although their heart and skeletal muscle mass did not change significantly relative to those acclimated to 10℃.Birds acclimated to 30℃also had lower mitochondrial state-4 respiration(S4R)and cytochrome c oxidase(COX)activity in their liver and skeletal muscle,compared to those acclimated to 10℃.Birds acclimated to the long photoperiod also had lower mitochondrial S4R and COX activity in their liver,compared to those acclimated to the short photoperiod.Conclusions:These results illustrate the changes in morphology,physiology,and enzyme activity induced by seasonal change in temperature and photoperiod in a small temperate passerine.Both temperature and photoperiod probably have a strong effect on seasonal variation in metabolic heat production in small birds in temperate regions.The effect of temperature is,however,stronger than that of photoperiod.展开更多
Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy c...Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms.BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear.In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines:wild Bramblings(Fringilla montifringilla),Little Buntings(Emberiza pusilla) and Eurasian Tree Sparrows(Passer montanus),caught in Wenzhou,southeastern China.Methods:Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome c oxidase(COX) activity in liver and pectoral muscle were measured with a Clark electrode.Results:Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings.Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.Conclusions:Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.展开更多
Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bra...Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines.展开更多
Background: Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few s...Background: Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few studies have focused on the thermogenesis and its effects on the body condition of birds. In this study, we examined the effects of food restriction on the body mass, basal metabolic rate(BMR) and body composition, and several physiological, biochemical and molecular markers potentially related to thermogenesis, in the Chinese Bulbul(Pycnonotus sinensis).Methods: Birds in the control group were provided with food ad libitum whereas those in the food restriction group were provided with one-half of the usual quantity of food for 12 days. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state 4 respiration and cytochrome c oxidase(COX) activity in the liver and pectoral muscle were measured with a Clark electrode. Avian uncoupling protein(avUCP) mRNA expression was determined in pectorals muscle with quantitative Real-time PCR.Results:Chinese Bulbuls in food restriction group decreased in body mass,BMR and internal organ(heart,kidneys,small intestine and total digestive tract)mass compared with the control group over the 12-day period of food restriction.Bulbuls in the food restriction group also had lower levels of state-4 respiration,COX activity in the liver and muscle,and mitochondrial avUCP gene expression in muscle compared to the control group.BMR was positively correlated with body mass,state 4 respiration in the liver and COX activity in the muscle.Conclusions:Our data indicate that Chinese Bulbuls not only sustain food shortage through simple passive mechanisms,such as reducing body and organ mass and energy expenditure,but also by reducing energetic metabolism in the liver and muscle.展开更多
Background: Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. In the present study, we measured diurnal variations in body mass, body te...Background: Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. In the present study, we measured diurnal variations in body mass, body temperature and basal metabolic rate(BMR) for seasonally acclimatized Hwameis(Garrulax canorus).Methods: Body mass was determined with a Sartorius balance. Metabolic rates of Hwameis were measured with an open-circuit respirometry system.Results: Body masses varied with time of day and were higher in daytime for Hwameis in both summer and winter, and body masses in winter were higher compared to that in summer. Body temperatures of Hwameis were higher in daytime, and the summer acclimatized birds had significantly higher body temperatures compared to the winter acclimatized birds. BMRs of Hwameis were significantly higher during the daytime compared to the nighttime of the daily cycle in both summer and winter, and Hwameis in winter had significantly higher BMRs than that in summer.Conclusions: This result showed that Hwameis rely mostly on metabolic capacity to maintain their body temperature in cold weathers, and Hwameis exhibited daily and seasonal flexibility in morphology and physiology which is important under changing environmental conditions.展开更多
Extreme hot weather is occurring more frequently due to global warming,posing a significant threat to species survival.Birds in particular are more likely to overheat in hot weather because they have a higher body tem...Extreme hot weather is occurring more frequently due to global warming,posing a significant threat to species survival.Birds in particular are more likely to overheat in hot weather because they have a higher body temperature.This study used a heat stress model to investigate the antioxidant defense mechanisms and changes in fatty acid catabolism in Red-billed Leiothrix(Leiothrix lutea)to gain an understanding of how birds adapt to high temperatures.The birds were divided into five groups:a control group(30℃for 0 days),1 D group(40℃for 1 day),3 D group(40℃for 3 days),14 D group(40℃for 14 days)and recovery group(40℃for 14 days,then 30℃for 14 days).Our results indicated that when Red-billed Leiothrix are subjected to heat stress,malondialdehyde(MDA)content in the liver significantly increased,as did the enzyme activities of catalase(CAT),glutathione-SH-peroxidase(GSH-PX)and total antioxidant capacity(T-AOC)in the liver.Furthermore,there was a significant increase in heat shock protein 70(HSP70)expression in the liver,while avian uncoupling protein(avUCP)expression in muscle was significantly reduced.Additionally,there was a significant reduction in fatty acid catabolism enzyme activity such as 3-hydroxyacyl-CoAdehydrogenase(HOAD)activity in the heart,and carnitine palmitoyl transferase 1(CPT-1)and citrate synthase(CS)activity in the heart and liver.Furthermore,fatty acid translocase(FAT/CD36)in the heart,heart-type fatty acid binding protein(H-FABP)and fatty acid binding protein(FABP-pm)in the liver and heart were also significantly decreased.These changes reverted after treatment,but not to the same level as the control group.Our results indicated that when Red-billed Leiothrix are exposed to heat stress their internal antioxidant defense system is activated to counteract the damage caused by high temperatures.However,even with high antioxidant levels,prolonged high temperature exposure still caused some degree of oxidative damage possibly requiring a longer recovery time.Additionally,Red-billed Leiothrix may be able to resist heat stress by reducing fatty acid transport and catabolism.展开更多
Temperature and other environmental factors play an integral role in the metabolic adjustments of animals and drive a series of morphological,physiological,and behavioral adaptions essential to survival.However,it is ...Temperature and other environmental factors play an integral role in the metabolic adjustments of animals and drive a series of morphological,physiological,and behavioral adaptions essential to survival.However,it is not clear how the capacity of an organism for temperature acclimation translates into seasonal acclimatization to maintain survival.Basal metabolic rate(BMR),evaporative water loss(EWL),and energy budget were measured in the Chinese Hwamei(Garrulax canorus)following winter and summer acclimatization,and in those acclimatized to 15℃(cold)and 35℃(warm)under laboratory conditions for 28 days.In addition to the above indicators,internal organ masses,as well as state 4 respiration and cytochrome c oxidase(COX)activity were also measured for the liver,skeletal muscle,heart,and kidney.Both winter-acclimatized and cold-acclimated birds exhibited significantly higher BMR,EWL,and energy budget,as well as organ masses,state 4 respiration,and COX activity compared with the summer-acclimatized and warm-acclimated birds.This indicated that the Chinese Hwamei could adapt to seasonal or just temperature changes through some physiological and biochemical thermogenic adjustments,which would be beneficial to cope with natural environmental changes.A general linear model showed that body mass,BMR,GEI,state 4 respiration in the liver and kidney,and COX activity in the skeletal muscle,liver,and kidney were significantly affected by temperature and acclimation.A positive correlation was observed between BMR and each of the other parameters(body mass,EWL,energy budget,heart dry mass,kidney dry mass,state 4 respiration)in the muscle,heart,and kidney and also between BMR and COX activity in the muscle and kidney.The results suggested that similar to seasonal acclimatization,Chinese Hwameis subjected to temperature acclimation also exhibited significant differences in metabolism-related physiological and biochemical parameters,depending on the temperature.The data also supported the prediction that metabolic adjustment might be the primary means by which small birds meet the energetic challenges triggered by cold conditions.展开更多
Acoustic communication is the most important form of communication in anuran amphibians. To understand the acoustic characteristics of male Babina adenopleura, we recorded advertisement calls and analyzed their acoust...Acoustic communication is the most important form of communication in anuran amphibians. To understand the acoustic characteristics of male Babina adenopleura, we recorded advertisement calls and analyzed their acoustic parameters during the breeding season. Male B. adenopleura produced calls with a variable number of notes(1–5), and each note contained harmonics. Although 6% of call notes did not exhibit frequency modulation(FM), two call note FM patterns were observed:(1) upward FM;(2) upward–downward FM. With the exception of 1- and 5- note calls, the duration of successive notes decreased monotonically. With the exception of 1 note calls, the fundamental frequency of the first note was lowest, then increased; the greatest change in the fundamental frequency was always between notes 1 and 2. The dominant frequency varied between calls. For example for the first call note the dominant frequency occurred in some cases in the first harmonic(located in the 605.320 ± 64.533 Hz frequency band), the second harmonic(918 ± 9 Hz band), the fourth harmonic(1712 ± 333 Hz band), the sixth harmonic(the 2165 ± 152 Hz band), the seventh harmonic(the 2269 ± 140 Hz band), the eighth harmonic(the 2466 ± 15 Hz band) or the ninth harmonic(the 2636 ± 21 Hz band). Although male B. adenopleura advertisement calls have a distinctive structure, they have similar characteristics to the calls of the music frog, B. daunchina.展开更多
Structural analysis of Candida antarctica lipase B (CALB) indicates that side chain of leucine at 278 site lies above the entrance of the catalytic pocket, which prognosticates its potential role on substrate specific...Structural analysis of Candida antarctica lipase B (CALB) indicates that side chain of leucine at 278 site lies above the entrance of the catalytic pocket, which prognosticates its potential role on substrate specificity of the enzyme. To verify this presumption, shortened side chain of glycine or proline was rational designed and mutants were constructed by site-directed mutagenesis method. The colorimetric assay using p-nitrophenyl esters of fatty acids with various chain-lengths was used to study the substrate preference of lipases. Results indicated that L278G or L278P mutations both induced the drift of substrate specificity of CALB from p-nitrophenyl caprylate (pNP-C8) to longer carbon chain length of p-nitrophenyl caprate (pNP-C10). Meanwhile, Vmax value of two mutants to pNP-C10 was both higher than that of wild-type. Docking results also indicated that shortened side chain of glycine or proline residues substitution at this site could get rid of the space block present above the catalytic pocket, and made longer chain substrate (pNP-C10) enter into the catalytic pocket easier. The modulation of specificity observed allowed for building substrate binding model and opened new possibilities for designing ligand specific lipases.展开更多
Currently, phosphate based glasses have been potential future biomaterial for medical application due to excellent cytocompatibility and fully bioresorbability. In this study, phosphate based glass system with composi...Currently, phosphate based glasses have been potential future biomaterial for medical application due to excellent cytocompatibility and fully bioresorbability. In this study, phosphate based glass system with composition of 48P2O5-12B2O3-(25-X)MgO-14CaO-1Na2O-(X)Fe2O3 (X = 6, 8, 10) and 45P2O5-(Y)B2O3-(32-Y)MgO-14CaO-1Na2O-8Fe2O3 (Y = 12, 15, 20), was prepared via a melting quenching process. The effect of replacing MgO with Fe2O3 and B2O3 on the structural, thermal, degradation properties of phosphate based glass was investigated. Fourier Transform Infrared (FTIR) spectroscopy and Raman spectroscopy analysis confirmed the polymerisation of phosphate based glass network with addition of Fe2O3, thus the processing window was observed to increase whilst the dissolution rate was reduced, attributed to the formation of Fe-O-P cross-link. As the effect on the glass structure stability was demonstrated by both B2O3 and MgO, the nonlinear variation of thermal stability and degradation behaviour was observed for glass system with substitution of MgO by B2O3. However, due to the lower dissolution rate of glass system when compared to the biocompatible phosphate based glass in preliminary study, the expected cytocompatibility could be confirmed in the downstream activities.展开更多
Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines.However,many patients experience minimal benefits from certain medical treatments because of poor compliance,short retention t...Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines.However,many patients experience minimal benefits from certain medical treatments because of poor compliance,short retention times in the oral cavity,and inadequate drug efficacy.Herein,we present a novel hydrogel patch(SCE2)composed of a biopolymer matrix(featuring ultraviolet-triggered adhesion properties)loaded with cuttlefish ink nanoparticles(possessing pro-healing functions).Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light.SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species.These properties contribute to the elimination of bacteria and the management of the oxidation process,thus accelerating the healing phase’s progression from inflammation to proliferation.In studies involving diabetic rats with oral ulcers,the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area,facilitating rapid re-epithelialization,and fostering angiogenesis.In conclusion,this light-sensitive hydrogel patch offers a promising path to expedited wound healing,potentially transforming treatment strategies for clinical oral ulcers.展开更多
文摘<div style="text-align:justify;"> This paper introduces a Terahertz (THz) ellipsometer thickness measurement method based on Bessel beams. The ellipsometry method is used to measure the thickness of film in the THz band. And the thickness of film could be measured in the range of hundreds of microns which the measurement of film thickness by ellipsometer is usually only a few hundred nm in visible light. In addition, the photon energy of the THz-wave is very low and has little damage to the film. The THz Bessel beam has the characteristics of self-healing and diffraction-free. It can make the film thickness measurement within the diffraction-free distance, which is conducive to the flexibility of the ellipsometer system. We use a multi-frequency method to measure film with two-dimensional finite different time domain (FDTD) to numerical simulation analysis of light intensity successfully. </div>
文摘In order to study stream sediments in the terahertz range, we have measured six reference stream sediment samples by terahertz time-domain spectroscopy (THz-TDS). We obtained the absorption coefficients and refractive indexes. By analyzing the spectra, we got different drops in amplitude and delays in time. The absorption and refractive properties of samples changed with its components and types. In addition, we also found there was a nearly linear relationship between the absorption coefficient and the frequency. We calculated the slope value (K) of each sample by linear fitting, and find the K was corresponding to the contents of the samples. The results showed THz-TDS was an effective method to the analysis of stream sediments.
基金financially supported by grants from the National Natural Science Foundation of China(No.31470472)the National Undergraduate Innovation and Entrepreneurship Training Program and the Zhejiang Province“Xinmiao”Project
文摘Background: Acclimatization to winter conditions is an essential prerequisite for the survival of small birds in the northern temperate zone.Changes in photoperiod,ambient temperature and food availability trigger seasonal physiological and behavioral acclimatization in many passerines.Seasonal trends in metabolic parameters are well known in avian populations from temperate environments;however,the physiological and biochemical mechanisms underlying these trends are incompletely understood.In this study,we used an integrative approach to measure variation in the thermogenic properties of the male Silky Starling(Sturnus sericeus) at different levels or organization,from the whole organism to the biochemical.We measured body mass(Mb),basal metabolic rate(BMR),energy budget,the mass of selected internal organs,state 4 respiration and cytochrome c oxidase(COX) activity in the heart,liver and muscle.Methods: Oxygen consumption was measured using an open-circuit respirometry system.The energy intake of the birds were then determined using an oxygen bomb calorimeter.Mitochondrial state 4 respiration and COX activity in heart,liver and pectoral muscle were measured with a Clark electrode.Results: The results suggest that acclimatization to winter conditions caused significant change in each of the measured variables,specifically,increases in Mb,organ mass,BMR,energy intake and cellular enzyme activity.Furthermore,BMR was positively correlated with body mass,energy intake,the mass of selected internal organs,state 4 respiration in the heart,liver and muscle,and COX activity in the heart and muscle.Conclusions: These results suggest that the male Silky Starling's enhanced basal thermogenesis under winter conditions is achieved by making a suite of adjustments from the whole organism to the biochemical level,and provide further evidence to support the notion that small birds have high phenotypic plasticity with respect to seasonal changes.
基金financially supported by grants from the National Natural Science Foundation of China (No.31070366 and No.31470472)the Natural Science Foundation (LY13C030005) in Zhejian Provincethe Zhejiang Province ‘Xinmiao’ Project
文摘Background: Seasonal adjustments in body mass and energy budget are important for the survival of small birds in temperate zones. Seasonal changes in body mass, body temperature, gross energy intake(GEI), digestible energy intake(DEI), body fat content, as well as length and mass of the digestive tract, were measured in Chinese Bulbuls(Pycnonotus sinensis) caught in the wild at Wenzhou, China.Methods: Body mass was determined with a Sartorius balance. The caloric contents of the dried food and feces were then determined using a oxygen bomb calorimeter. Total fat was extracted from the dried carcasses by ether extraction in a Soxhlet apparatus. The digestive tract of each bird was measured and weighed, and was then dried to a constant mass.Results: Body mass showed a significant seasonal variation and was higher in spring and winter than in summer and autumn. Body fat was higher in winter than in other seasons. GEI and DEI were significantly higher in winter.The length and mass of the digestive tract were greatest in winter and the magnitude of both these parameters was positively correlated with body mass, GEI and DEI. Small passerines typically have higher daily energy expenditure in winter, necessitating increased food consumption.Conclusions: This general observation is consistent with the observed winter increase in gut volume and body mass in Chinese Bulbuls. These results suggest that Chinese Bulbuls adjust to winter conditions by increasing their body mass, body fat, GEI, DEI and digestive tract size.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.31470472 and 31971420)the National Undergraduate “Innovation” Projectthe “Xinmiao” Project in Zhejiang Province
文摘Background:The thermoregulatory ability of animals is strongly influenced by the temperature of their environment.Acclimation to cold requires a range of physiological and morphological adjustments.In this study,we tested the hypothesis that a small passerine,the Red-billed Leiothrix(Leiothrix lutea),can maintain homeothermy in cold conditions by adjusting the physiology and biochemistry of its tissue and organs and return to its former physiological and biochemical state when moved to a warm temperature.Methods:Phenotypic variation in thermogenic activity of the Red-billed Leiothrixs(Leiothrix lutea)was investigated under warm(35℃),normal(25℃)or cold(15℃)ambient temperature conditions.Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome-c oxidase(COX)activity in liver,kidney heart and pectoral muscle were measured with a Clark electrode.Results:Birds acclimated to an ambient temperature of 15℃ for 4 weeks significantly increased their basal metabolic rate(BMR)compared to a control group kept at 25℃.Birds acclimated to 35℃ decreased their BMR,gross energy intake(GEI)and digestible energy intake(DEI).Furthermore,birds acclimated to 15℃ increased state-4 respiration in their pectoral muscles and cytochrome-c oxidase(COX)activity in their liver and pectoral muscle,compared to the 25℃ control group.Birds acclimated to 35℃ also displayed lower state-4 respiration and COX activity in the liver,heart and pectoral muscles,compared to those kept at 25℃.There was a positive correlation between BMR and state-4 respiration,and between BMR and COX activity,in all of the above organs except the liver and heart.Conclusions:Our study illustrates that the morphological,physiological,and enzymatic changes are associated with temperature acclimation in the Red-billed Leiothrix,and supports the notion that the primary means by which small birds meet the energetic challenges of cold conditions is through metabolic adjustments.
基金This study was financially supported by grants from the National Natural Science Foundation of China(No.31470472 and 31971420).
文摘Background:Small birds in temperate habitats must either migrate,or adjust aspects of their morphology,physiology and behavior to cope with seasonal change in temperature and photoperiod.It is,however,difficult to accurately measure how seasonal changes in temperature and photoperiod affect physiological processes such as basal metabolic rate(BMR)and metabolic activity.To address this problem,we collected data in each month of the year on body mass(Mb)and BMR,and conducted a series of experiments to determine the effect of temperature and photoperiod on Mb,BMR and physiological markers of metabolic activity,in the Eurasian Tree Sparrow(Passer montanus).Methods:In one experiment,we measured monthly change in Mb and BMR in a captive group of birds over a year.In another experiment,we examined the effects of acclimating birds to two different temperatures,10 and 30℃,and a long and a short photoperiod(16 h light:8 h dark and 8 h light:16 h dark,respectively)for 4 weeks.Results:We found that these treatments induced sparrows to adjust their Mb and metabolic rate processes.Acclimation to 30℃for 4 weeks significantly decreased sparrows’Mb,BMR,and energy intake,including both gross energy intake and digestible energy intake,compared to birds acclimated to 10℃.The dry mass of the liver,kidneys and digestive tract of birds acclimated to 30℃also significantly decreased,although their heart and skeletal muscle mass did not change significantly relative to those acclimated to 10℃.Birds acclimated to 30℃also had lower mitochondrial state-4 respiration(S4R)and cytochrome c oxidase(COX)activity in their liver and skeletal muscle,compared to those acclimated to 10℃.Birds acclimated to the long photoperiod also had lower mitochondrial S4R and COX activity in their liver,compared to those acclimated to the short photoperiod.Conclusions:These results illustrate the changes in morphology,physiology,and enzyme activity induced by seasonal change in temperature and photoperiod in a small temperate passerine.Both temperature and photoperiod probably have a strong effect on seasonal variation in metabolic heat production in small birds in temperate regions.The effect of temperature is,however,stronger than that of photoperiod.
基金financially supported by Grants from the National Natural Science Foundation of China (No. 31470472)the National Undergraduate "Innovation" Project and Zhejiang Province’s "Xinmiao" Project
文摘Background:The capacity for thermogenesis is considered part of an animal's adaptive strategy for survival,and basal metabolic rate(BMR) is one of the fundamental physiological standards for assessing the energy cost of thermoregulation in endotherms.BMR has been shown to be a highly flexible phenotypic trait both between,and within,species,but the metabolic mechanisms involved in the regulation of BMR,which range from variation in organ mass to biochemical adjustments,remain unclear.In this study,we investigated the relationship between organ mass,biochemical markers of metabolic tissue activity,and thermogenesis,in three species of small passerines:wild Bramblings(Fringilla montifringilla),Little Buntings(Emberiza pusilla) and Eurasian Tree Sparrows(Passer montanus),caught in Wenzhou,southeastern China.Methods:Oxygen consumption was measured using an open-circuit respirometry system.Mitochondrial state-4 respiration and cytochrome c oxidase(COX) activity in liver and pectoral muscle were measured with a Clark electrode.Results:Our results show that Eurasian Tree Sparrows had significantly higher BMR,digestive organ mass,mitochondrial state-4 respiration capacity and COX activity in liver and muscle,than Bramblings and Little Buntings.Furthermore,interspecific differences in BMR were strongly correlated with those indigestive tract mass,state-4 respiration and COX activity.Conclusions:Our findings suggest that the digestive organ mass,state-4 respiration and COX activity play an important role in determining interspecific differences in BMR.
基金supported by National High-tech Research and Development Program of China (863 Program) (2013AA030701)Science and Technology Project of the State Grid Xinjiang Electric Power Corporation (5230DK15009L)
文摘Running composite insulators are prone to failure due to their harsh surrounding work environment, which directly affects the safe operation of transmission lines. This paper puts forward the method of using fiber Bragg grating(FBG) as the monitors to parameters correlated with thermal and stress of the composite insulators in transmission lines at working status. Firstly, monitoring points are found out by the mechanical test on composite insulator samples. Secondly, based on the monitoring theory, this paper introduces the feasibility design frame of the composite insulator with FBG implanted in the rod and the online monitor system. At last, it describes applications of this monitor system in the field of transmission lines.
基金financially supported by grants from the National Natural Science Foundation of China(No.31470472)the National Undergraduate “Innovation” Projectthe Zhejiang Province ‘Xinmiao’ Project
文摘Background: Food is an important environmental factor that affects animals' energy metabolism and food shortage has significant effects on animals' behavior, physiology and biochemistry. However, to date few studies have focused on the thermogenesis and its effects on the body condition of birds. In this study, we examined the effects of food restriction on the body mass, basal metabolic rate(BMR) and body composition, and several physiological, biochemical and molecular markers potentially related to thermogenesis, in the Chinese Bulbul(Pycnonotus sinensis).Methods: Birds in the control group were provided with food ad libitum whereas those in the food restriction group were provided with one-half of the usual quantity of food for 12 days. Oxygen consumption was measured using an open-circuit respirometry system. Mitochondrial state 4 respiration and cytochrome c oxidase(COX) activity in the liver and pectoral muscle were measured with a Clark electrode. Avian uncoupling protein(avUCP) mRNA expression was determined in pectorals muscle with quantitative Real-time PCR.Results:Chinese Bulbuls in food restriction group decreased in body mass,BMR and internal organ(heart,kidneys,small intestine and total digestive tract)mass compared with the control group over the 12-day period of food restriction.Bulbuls in the food restriction group also had lower levels of state-4 respiration,COX activity in the liver and muscle,and mitochondrial avUCP gene expression in muscle compared to the control group.BMR was positively correlated with body mass,state 4 respiration in the liver and COX activity in the muscle.Conclusions:Our data indicate that Chinese Bulbuls not only sustain food shortage through simple passive mechanisms,such as reducing body and organ mass and energy expenditure,but also by reducing energetic metabolism in the liver and muscle.
基金financially supported by grants from the National Natural Science Foundation of China (No. 31070366 and 31470472)the Natural Science Foundation (LY13C030005) in Zhejiang Provincethe Zhejiang Province "Xinmiao" Project (2014R424032)
文摘Background: Acclimatization to winter conditions is an essential prerequisite for survival of small passerines of the northern temperate zone. In the present study, we measured diurnal variations in body mass, body temperature and basal metabolic rate(BMR) for seasonally acclimatized Hwameis(Garrulax canorus).Methods: Body mass was determined with a Sartorius balance. Metabolic rates of Hwameis were measured with an open-circuit respirometry system.Results: Body masses varied with time of day and were higher in daytime for Hwameis in both summer and winter, and body masses in winter were higher compared to that in summer. Body temperatures of Hwameis were higher in daytime, and the summer acclimatized birds had significantly higher body temperatures compared to the winter acclimatized birds. BMRs of Hwameis were significantly higher during the daytime compared to the nighttime of the daily cycle in both summer and winter, and Hwameis in winter had significantly higher BMRs than that in summer.Conclusions: This result showed that Hwameis rely mostly on metabolic capacity to maintain their body temperature in cold weathers, and Hwameis exhibited daily and seasonal flexibility in morphology and physiology which is important under changing environmental conditions.
基金This study was financially supported by grants from the National Natural Science Foundation of China(No.31971420,32171497).
文摘Extreme hot weather is occurring more frequently due to global warming,posing a significant threat to species survival.Birds in particular are more likely to overheat in hot weather because they have a higher body temperature.This study used a heat stress model to investigate the antioxidant defense mechanisms and changes in fatty acid catabolism in Red-billed Leiothrix(Leiothrix lutea)to gain an understanding of how birds adapt to high temperatures.The birds were divided into five groups:a control group(30℃for 0 days),1 D group(40℃for 1 day),3 D group(40℃for 3 days),14 D group(40℃for 14 days)and recovery group(40℃for 14 days,then 30℃for 14 days).Our results indicated that when Red-billed Leiothrix are subjected to heat stress,malondialdehyde(MDA)content in the liver significantly increased,as did the enzyme activities of catalase(CAT),glutathione-SH-peroxidase(GSH-PX)and total antioxidant capacity(T-AOC)in the liver.Furthermore,there was a significant increase in heat shock protein 70(HSP70)expression in the liver,while avian uncoupling protein(avUCP)expression in muscle was significantly reduced.Additionally,there was a significant reduction in fatty acid catabolism enzyme activity such as 3-hydroxyacyl-CoAdehydrogenase(HOAD)activity in the heart,and carnitine palmitoyl transferase 1(CPT-1)and citrate synthase(CS)activity in the heart and liver.Furthermore,fatty acid translocase(FAT/CD36)in the heart,heart-type fatty acid binding protein(H-FABP)and fatty acid binding protein(FABP-pm)in the liver and heart were also significantly decreased.These changes reverted after treatment,but not to the same level as the control group.Our results indicated that when Red-billed Leiothrix are exposed to heat stress their internal antioxidant defense system is activated to counteract the damage caused by high temperatures.However,even with high antioxidant levels,prolonged high temperature exposure still caused some degree of oxidative damage possibly requiring a longer recovery time.Additionally,Red-billed Leiothrix may be able to resist heat stress by reducing fatty acid transport and catabolism.
基金financially supported by grants from the National Natural Science Foundation of China(No.31971420 and No.32171497)。
文摘Temperature and other environmental factors play an integral role in the metabolic adjustments of animals and drive a series of morphological,physiological,and behavioral adaptions essential to survival.However,it is not clear how the capacity of an organism for temperature acclimation translates into seasonal acclimatization to maintain survival.Basal metabolic rate(BMR),evaporative water loss(EWL),and energy budget were measured in the Chinese Hwamei(Garrulax canorus)following winter and summer acclimatization,and in those acclimatized to 15℃(cold)and 35℃(warm)under laboratory conditions for 28 days.In addition to the above indicators,internal organ masses,as well as state 4 respiration and cytochrome c oxidase(COX)activity were also measured for the liver,skeletal muscle,heart,and kidney.Both winter-acclimatized and cold-acclimated birds exhibited significantly higher BMR,EWL,and energy budget,as well as organ masses,state 4 respiration,and COX activity compared with the summer-acclimatized and warm-acclimated birds.This indicated that the Chinese Hwamei could adapt to seasonal or just temperature changes through some physiological and biochemical thermogenic adjustments,which would be beneficial to cope with natural environmental changes.A general linear model showed that body mass,BMR,GEI,state 4 respiration in the liver and kidney,and COX activity in the skeletal muscle,liver,and kidney were significantly affected by temperature and acclimation.A positive correlation was observed between BMR and each of the other parameters(body mass,EWL,energy budget,heart dry mass,kidney dry mass,state 4 respiration)in the muscle,heart,and kidney and also between BMR and COX activity in the muscle and kidney.The results suggested that similar to seasonal acclimatization,Chinese Hwameis subjected to temperature acclimation also exhibited significant differences in metabolism-related physiological and biochemical parameters,depending on the temperature.The data also supported the prediction that metabolic adjustment might be the primary means by which small birds meet the energetic challenges triggered by cold conditions.
基金financially supported by the National Science and Technology Project (2008BAC39B02–11)the National Undergraduate Innovation and Entrepreneurship Training Program (201310351015)the Zhejiang Province "Xinmiao" Project (2012R 424021)
文摘Acoustic communication is the most important form of communication in anuran amphibians. To understand the acoustic characteristics of male Babina adenopleura, we recorded advertisement calls and analyzed their acoustic parameters during the breeding season. Male B. adenopleura produced calls with a variable number of notes(1–5), and each note contained harmonics. Although 6% of call notes did not exhibit frequency modulation(FM), two call note FM patterns were observed:(1) upward FM;(2) upward–downward FM. With the exception of 1- and 5- note calls, the duration of successive notes decreased monotonically. With the exception of 1 note calls, the fundamental frequency of the first note was lowest, then increased; the greatest change in the fundamental frequency was always between notes 1 and 2. The dominant frequency varied between calls. For example for the first call note the dominant frequency occurred in some cases in the first harmonic(located in the 605.320 ± 64.533 Hz frequency band), the second harmonic(918 ± 9 Hz band), the fourth harmonic(1712 ± 333 Hz band), the sixth harmonic(the 2165 ± 152 Hz band), the seventh harmonic(the 2269 ± 140 Hz band), the eighth harmonic(the 2466 ± 15 Hz band) or the ninth harmonic(the 2636 ± 21 Hz band). Although male B. adenopleura advertisement calls have a distinctive structure, they have similar characteristics to the calls of the music frog, B. daunchina.
文摘Structural analysis of Candida antarctica lipase B (CALB) indicates that side chain of leucine at 278 site lies above the entrance of the catalytic pocket, which prognosticates its potential role on substrate specificity of the enzyme. To verify this presumption, shortened side chain of glycine or proline was rational designed and mutants were constructed by site-directed mutagenesis method. The colorimetric assay using p-nitrophenyl esters of fatty acids with various chain-lengths was used to study the substrate preference of lipases. Results indicated that L278G or L278P mutations both induced the drift of substrate specificity of CALB from p-nitrophenyl caprylate (pNP-C8) to longer carbon chain length of p-nitrophenyl caprate (pNP-C10). Meanwhile, Vmax value of two mutants to pNP-C10 was both higher than that of wild-type. Docking results also indicated that shortened side chain of glycine or proline residues substitution at this site could get rid of the space block present above the catalytic pocket, and made longer chain substrate (pNP-C10) enter into the catalytic pocket easier. The modulation of specificity observed allowed for building substrate binding model and opened new possibilities for designing ligand specific lipases.
文摘Currently, phosphate based glasses have been potential future biomaterial for medical application due to excellent cytocompatibility and fully bioresorbability. In this study, phosphate based glass system with composition of 48P2O5-12B2O3-(25-X)MgO-14CaO-1Na2O-(X)Fe2O3 (X = 6, 8, 10) and 45P2O5-(Y)B2O3-(32-Y)MgO-14CaO-1Na2O-8Fe2O3 (Y = 12, 15, 20), was prepared via a melting quenching process. The effect of replacing MgO with Fe2O3 and B2O3 on the structural, thermal, degradation properties of phosphate based glass was investigated. Fourier Transform Infrared (FTIR) spectroscopy and Raman spectroscopy analysis confirmed the polymerisation of phosphate based glass network with addition of Fe2O3, thus the processing window was observed to increase whilst the dissolution rate was reduced, attributed to the formation of Fe-O-P cross-link. As the effect on the glass structure stability was demonstrated by both B2O3 and MgO, the nonlinear variation of thermal stability and degradation behaviour was observed for glass system with substitution of MgO by B2O3. However, due to the lower dissolution rate of glass system when compared to the biocompatible phosphate based glass in preliminary study, the expected cytocompatibility could be confirmed in the downstream activities.
基金The financial backing for this research comes from the National Natural Science Foundation of China(82371016,21977081,82071170)the Zhejiang Provincial Natural Science Foundation for Distinguished Young Scholar(LR23C100001)+2 种基金the Zhejiang Provincial Science and Technology Project for Public Welfare(LGF21H140004)the Natural Science Foundation of Zhejiang Province(LQ22E030011)the Wenzhou Municipal Science and Technology Project(ZY2019009)。
文摘Oral ulcers can be managed using a variety of biomaterials that deliver drugs or cytokines.However,many patients experience minimal benefits from certain medical treatments because of poor compliance,short retention times in the oral cavity,and inadequate drug efficacy.Herein,we present a novel hydrogel patch(SCE2)composed of a biopolymer matrix(featuring ultraviolet-triggered adhesion properties)loaded with cuttlefish ink nanoparticles(possessing pro-healing functions).Applying a straightforward local method initiates the formation of a hydrogel barrier that adheres to mucosal injuries under the influence of ultraviolet light.SCE2 then demonstrates exceptional capabilities for near-infrared photothermal sterilization and neutralization of reactive oxygen species.These properties contribute to the elimination of bacteria and the management of the oxidation process,thus accelerating the healing phase’s progression from inflammation to proliferation.In studies involving diabetic rats with oral ulcers,the SCE2 adhesive patch significantly quickens recovery by altering the inflamed state of the injured area,facilitating rapid re-epithelialization,and fostering angiogenesis.In conclusion,this light-sensitive hydrogel patch offers a promising path to expedited wound healing,potentially transforming treatment strategies for clinical oral ulcers.