Perovskite solar cells have emerged as a promising technology for renewable energy generation.However,the successful integration of perovskite solar cells with energy storage devices to establish high-efficiency and l...Perovskite solar cells have emerged as a promising technology for renewable energy generation.However,the successful integration of perovskite solar cells with energy storage devices to establish high-efficiency and long-term stable photorechargeable systems remains a persistent challenge.Issues such as electrical mismatch and restricted integration levels contribute to elevated internal resistance,leading to suboptimal overall efficiency(η_(overall))within photorechargeable systems.Additionally,the compatibility of perovskite solar cells with electrolytes from energy storage devices poses another significant concern regarding their stability.To address these limitations,we demonstrate a highly integrated photorechargeable system that combines perovskite solar cells with a solid-state zinc-ion hybrid capacitor using a streamlined process.Our study employs a novel ultraviolet-cured ionogel electrolyte to prevent moisture-induced degradation of the perovskite layer in integrated photorechargeable system,enabling perovskite solar cells to achieve maximum power conversion efficiencies and facilitating the monolithic design of the system with minimal energy loss.By precisely matching voltages between the two modules and leveraging the superior energy storage efficiency,our integrated photorechargeable system achieves a remarkableηoverall of 10.01%while maintaining excellent cycling stability.This innovative design and the comprehensive investigations of the dynamic photocharging process in monolithic systems,not only offer a reliable and enduring power source but also provide guidelines for future development of self-power off-grid electronics.展开更多
Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocol...Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.展开更多
Lithium-sulfur(Li-S)batteries have attracted increased interest because of the high theoretical energy density,low cost,and environmental friendliness.Conducting polymers(CPs),as one of the most promising materials us...Lithium-sulfur(Li-S)batteries have attracted increased interest because of the high theoretical energy density,low cost,and environmental friendliness.Conducting polymers(CPs),as one of the most promising materials used in Li-S batteries,can not only facilitate electron transfer and buffer the large volumetric change of sulfur benefiting from their porous structure and excellent flexibility,but also enable stronger physical/chemical adsorption capacity toward polysulfides(LiPSs)when doped with abundant heteroatoms to promote the sulfur redox kinetics and achieve the high sulfur loading.This review firstly introduces the properties of various CPs including structural CPs(polypyrrole(PPy),polyaniline(PANi),polyethylene dioxothiophene[PEDOT])and compound CPs(polyethylene oxide(PEO),polyvinyl alcohol(PVA)and poly(acrylic acid)[PAA]),and their application potential in Li-S batteries.Furthermore,the research progress of various CPs in different components(cathode,separator,and interlayer)of Li-S batteries is systematically summarized.Finally,the application perspective of the CPs in Li-S batteries as a potential guidance is comprehensively discussed.展开更多
Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on th...Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability.展开更多
基金the UK Engineering and Physical Sciences Research Council(EPSRC)Standard Research(EP/V027131/1)EPSRC New Investigator Award(2018+6 种基金EP/R043272/1)Newton Advanced Fel owship(192097)for financial supportEPSRC New Investigator Award(EP/V002260/1)National Measurement System of the UK Department of Business,Energy&Industrial Strategythe China Scholarship Council(CSC,no.201808370197)for financial supportCSC(no.202007040033)for financial supportCSC(no.201908310074)for financial support
文摘Perovskite solar cells have emerged as a promising technology for renewable energy generation.However,the successful integration of perovskite solar cells with energy storage devices to establish high-efficiency and long-term stable photorechargeable systems remains a persistent challenge.Issues such as electrical mismatch and restricted integration levels contribute to elevated internal resistance,leading to suboptimal overall efficiency(η_(overall))within photorechargeable systems.Additionally,the compatibility of perovskite solar cells with electrolytes from energy storage devices poses another significant concern regarding their stability.To address these limitations,we demonstrate a highly integrated photorechargeable system that combines perovskite solar cells with a solid-state zinc-ion hybrid capacitor using a streamlined process.Our study employs a novel ultraviolet-cured ionogel electrolyte to prevent moisture-induced degradation of the perovskite layer in integrated photorechargeable system,enabling perovskite solar cells to achieve maximum power conversion efficiencies and facilitating the monolithic design of the system with minimal energy loss.By precisely matching voltages between the two modules and leveraging the superior energy storage efficiency,our integrated photorechargeable system achieves a remarkableηoverall of 10.01%while maintaining excellent cycling stability.This innovative design and the comprehensive investigations of the dynamic photocharging process in monolithic systems,not only offer a reliable and enduring power source but also provide guidelines for future development of self-power off-grid electronics.
基金UK Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018,EP/R043272/1)Newton Advanced Fellowship(192097)for financial support+3 种基金the Royal Society,the Engineering and Physical Sciences Research Council(EPSRC,EP/R023980/1,EP/V027131/1)the European Research Council(ERC)under the European Union's Horizon 2020 research and innovation program(HYPERION,Grant Agreement Number 756962)the Royal Society and Tata Group(UF150033)EPSRC SPECIFIC IKC(EP/N020863/1)
文摘Metal oxide charge transport materials are preferable for realizing long-term stable and potentially low-cost perovskite solar cells(PSCs).However,due to some technical difficulties(e.g.,intricate fabrication protocols,high-temperature heating process,incompatible solvents,etc.),it is still challenging to achieve efficient and reliable all-metal-oxide-based devices.Here,we developed efficient inverted PSCs(IPSCs)based on solution-processed nickel oxide(NiO_(x))and tin oxide(SnO_(2))nanoparticles,working as hole and electron transport materials respectively,enabling a fast and balanced charge transfer for photogenerated charge carriers.Through further understanding and optimizing the perovskite/metal oxide interfaces,we have realized an outstanding power conversion efficiency(PCE)of 23.5%(the bandgap of the perovskite is 1.62 eV),which is the highest efficiency among IPSCs based on all-metal-oxide charge transport materials.Thanks to these stable metal oxides and improved interface properties,ambient stability(retaining 95%of initial PCE after 1 month),thermal stability(retaining 80%of initial PCE after 2 weeks)and light stability(retaining 90%of initial PCE after 1000 hours aging)of resultant devices are enhanced significantly.In addition,owing to the low-temperature fabrication procedures of the entire device,we have obtained a PCE of over 21%for flexible IPSCs with enhanced operational stability.
基金supported by the National Natural Science Foundation of China(51978569 and 52172097)Key Research and Development Program of Shaanxi Province(2022GY-301)+4 种基金Basic and Public Projects of Zhejiang Province(LGF21E020001)China Postdoctoral Science Foundation(2020 M683467)Basic Research Operating Expenses of XJTU(xzy022022041)China Scholarship Council foundation(201906285020 and 202206280212)support from Faraday Institution LiSTAR Programme(EP/S003053/1,Grant FIRG014).
文摘Lithium-sulfur(Li-S)batteries have attracted increased interest because of the high theoretical energy density,low cost,and environmental friendliness.Conducting polymers(CPs),as one of the most promising materials used in Li-S batteries,can not only facilitate electron transfer and buffer the large volumetric change of sulfur benefiting from their porous structure and excellent flexibility,but also enable stronger physical/chemical adsorption capacity toward polysulfides(LiPSs)when doped with abundant heteroatoms to promote the sulfur redox kinetics and achieve the high sulfur loading.This review firstly introduces the properties of various CPs including structural CPs(polypyrrole(PPy),polyaniline(PANi),polyethylene dioxothiophene[PEDOT])and compound CPs(polyethylene oxide(PEO),polyvinyl alcohol(PVA)and poly(acrylic acid)[PAA]),and their application potential in Li-S batteries.Furthermore,the research progress of various CPs in different components(cathode,separator,and interlayer)of Li-S batteries is systematically summarized.Finally,the application perspective of the CPs in Li-S batteries as a potential guidance is comprehensively discussed.
基金X.L.and T.W.are contributed equally to this work.W.Z.acknowledges the Engineering and Physical Sciences Research Council(EPSRC)New Investigator Award(2018EP/R043272/1)+8 种基金Marie Skłodowska-Curie Actions Individual Fellowships(839136)H.L.acknowledges the Newton Advanced Fellowship(192097)X.L.acknowledges the financial support from Zhengzhou University ScholarshipT.W thanks the University of Surrey Doctoral College for financial supportS.J.S.gratefully acknowledges the support of EPSRC(UK)under grant number EP/N021037/1L.D.thanks the China Scholarship Council and the Cambridge Trusts for fundingR.C.K.and J.A.S.thank the company Xenocs for their ongoing support through the X-ray scattering user program at the University of Sheffield and the EPSRC for funding the purchase of this instrumentZ.W.,Y.S.,and G.S.thank the financial support from Zhengzhou Materials Genome InstituteS.D.S.and K.J.acknowledge the Royal Society for funding。
文摘Recent advances in heterojunction and interfacial engineering of perovskite solar cells(PSCs)have enabled great progress in developing highly efficient and stable devices.Nevertheless,the effect of halide choice on the formation mechanism,crystallography,and photoelectric properties of the lowdimensional phase still requires further detailed study.In this work,we present key insights into the significance of halide choice when designing passivation strategies comprising large organic spacer salts,clarifying the effect of anions on the formation of quasi-2D/3D heterojunctions.To demonstrate the importance of halide influences,we employ novel neo-pentylammonium halide salts with different halide anions(neoPAX,X=I,Br,or Cl).We find that regardless of halide selection,iodide-based(neoPA)_(2)(FA)_((n-1))PbnI_((3n+1))phases are formed above the perovskite substrate,while the added halide anions diffuse and passivate the perovskite bulk.In addition,we also find the halide choice has an influence on the degree of dimensionality(n).Comparing the three halides,we find that chloride-based salts exhibit superior crystallographic,enhanced carrier transport,and extraction compared to the iodide and bromide analogs.As a result,we report high power conversion efficiency in quasi-2D/3D PSCs,which are optimal when using chloride salts,reaching up to 23.35%,and improving long-term stability.