The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of be...The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.展开更多
The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better...The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.展开更多
Beckmannia syzigachne is a noxious weed for rice-wheat rotations in China.The B.syzigachne(AH-02)population evolved metabolic resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl.To investigate the function of GT7...Beckmannia syzigachne is a noxious weed for rice-wheat rotations in China.The B.syzigachne(AH-02)population evolved metabolic resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl.To investigate the function of GT73C1 in this population,the GT73C1 gene was amplified by reverse transcription-polymerase chain reaction,and the sequence was 100%consistent with the transcriptome data.Its phylogenetic tree was displayed and annotated using FigTree v1.4.4.The plant overexpression vector of GT73C1 gene was constructed and used to transform Brachypodium distachyon plants.Furthermore,the expression of GT73C1 was significantly induced by fenoxaprop-P-ethyl and mesosulfuron-methyl,which was consistent with the findings from the whole plant bioassay.These results indicate that GT73C1 is closely related to the metabolic resistance of B.distachyon.展开更多
The preliminary results of this laboratory (unpublished) indicate that the nutritional value of whole wheat hay (wheat hay, for short) is very high, and the milk stage is the best period of wheat hay harvest. In this ...The preliminary results of this laboratory (unpublished) indicate that the nutritional value of whole wheat hay (wheat hay, for short) is very high, and the milk stage is the best period of wheat hay harvest. In this study, we investigated the feeding effect and economic benefits using wheat hay instead of alfalfa diet for dairy cows under the condition of the same energy and crude protein levels. Three types of diets were used: alfalfa diet, wheat hay diet and alfalfa + wheat hay diet. The results showed that the dry matter digestibility of alfalfa diet and alfalfa + wheat hay diet did not differ significantly (P > 0.1), but was significantly higher than that of wheat hay diet (P < 0.05). The wheat hay diet could produce more propionic acid and ammonia nitrogen (P < 0.05) in the rumen, and reduce the ratio of acetic/propionic and nitrogen utilization. There was no significant difference in milk production among the three diets (P > 0.1). There was no significant difference in milk somatic cell count and body condition score among the three groups (P > 0.1). The wheat hay diet could significantly increase milk protein and lactose (P contents of interleukin-6 in cows fed alfalfa diet and alfalfa + wheat diet were significantly higher than that in cows fed wheat hay diet (P < 0.05). There was no significant difference in interleukinm-6 between in cows fed alfalfa diet and alfalfa + wheat diet (P > 0.05). The use of wheat hay to replace imported alfalfa in whole or in part could save feed costs. Full substitution of alfalfa with wheat hay could have a daily economic benefit of 13.74 yuan.展开更多
[Objectives]The purpose was to standardize the scientific prevention and control of yellow aphids and effectively control their occurrence and spread.[Methods]On the basis of consulting domestic and foreign data and s...[Objectives]The purpose was to standardize the scientific prevention and control of yellow aphids and effectively control their occurrence and spread.[Methods]On the basis of consulting domestic and foreign data and standards extensively,a series of related trials were carried out.[Results]Technical specifications for integrated prevention and control of yellow aphids were formulated.[Conclusions]It is of great significance to the healthy and sustainable development of the fruit trees’industry,the implementation of standardized management,the reduction of pesticide uses,and the reduction of damage caused by yellow aphids to fruit trees,and also provides urgent-needed technical support and guarantee for the prevention and control of yellow aphids.展开更多
[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the mate...[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the material,the vegetative growth,yield and fruit quality of 8 different rootstock-scion combinations were compared.[Results]‘Tianhong 2’/SH6 as self-rooted rootstock had large average single fruit weight(256.33 g),large number of fruits per plant(188.68),the highest yield[(3250.08±23.42)kg/667 m ^(2)]and the highest colored area(93.5%),and the soluble solid content reached the requirement of high quality fruit(15.78%).[Conclusions]In central and southern Hebei Province,‘Tianhong 2’grafted on SH6 self-rooted rootstock has moderate growth,high yield and good fruit quality,so it can be considered as the preferred rootstock-scion combination in the local area.展开更多
Flowering is a prerequisite for apple fruiting,and apple flower buds are mixed buds,that is,the vegetative organs and flower structure exist in the same terminal bud simultaneously,which are formed in the year before ...Flowering is a prerequisite for apple fruiting,and apple flower buds are mixed buds,that is,the vegetative organs and flower structure exist in the same terminal bud simultaneously,which are formed in the year before flowering and fruiting,mainly including spur terminal buds and axillary buds.The infrequent formation of flower buds during its growth and biennial bearing are closely related to flower bud differentiation.Therefore,this paper reviews the research progress of flower bud differentiation of apple from the morphological differentiation,plant hormones and flowering-related genes,in order to provide a theoretical reference for efficient cultivation and stable yield of apple.展开更多
Apple‘Jiping 1’is a new early maturing apple variety bred by Shijiazhuang Pomology Institute,Hebei Academy of Agriculture and Forestry Sciences.To further normalize the standardized production technology of‘Jiping ...Apple‘Jiping 1’is a new early maturing apple variety bred by Shijiazhuang Pomology Institute,Hebei Academy of Agriculture and Forestry Sciences.To further normalize the standardized production technology of‘Jiping 1’,realize improvement and upgrading of fruit quality,and improve sustainable development of apple industry,according to national and industrial standards,specific requirements on selection of production orchard,planting,soil,fertilizer and water management,shaping and pruning,flower and fruit management,pest control,and fruit harvesting of‘Jiping 1’are put forward,and technical regulation for production of‘Jiping 1’(standard number:DB 13/T 5167-2020)is made.The regulation has important guiding significance for the production of early maturing apple in Hebei Province.展开更多
The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovol...The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovoltaic(PV)market,thereby making the management and maintenance of solar photovoltaic(SPV)panels a new area of business as neglecting it may lead to significant financial losses and failure to combat climate change and the energy crisis.SPV panels face many risks that may degrade their power generation performance,damage their structures,or even cause the complete loss of their power generation capacity during their long service life.It is hoped that these problems can be identified and resolved as soon as possible.However,this is a challenging task as a solar power plant(SPP)may contain hundreds even thousands of SPV panels.To provide a potential solution for this issue,a smart drone-based SPV panel condition monitoring(CM)technique has been studied in this paper.In the study,the U-Net neural network(UNNN),which is ideal for undertaking image segmentation tasks and good at handling small sample size problem,is adopted to automatically create mask images from the collected true color thermal infrared images.The support vector machine(SVM),which performs very well in highdimensional feature spaces and is therefore good at image recognition,is employed to classifying the mask images generated by the UNNN.The research result has shown that with the aid of the UNNN and SVM,the thermal infrared images that are remotely collected by drones from SPPs can be automatically and effectively processed,analyzed,and classified with reasonable accuracy(over 80%).Particularly,the mask images produced by the trained UNNN,which contain less interference items than true color thermal infrared images,significantly benefit the assessing accuracy of the health state of SPV panels.It is anticipated that the technical approach presented in this paper will serve as an inspiration for the exploration of more advanced and dependable smart asset management techniques within the solar power industry.展开更多
Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(ST...Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(STON2)gene encodes a major adaptor for clathrin-mediated endocytosis(CME)of synaptic vesicles.In this study,we showed that the C-C(307Pro-851Ala)haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME.We found that schizophrenia-related STON2 variations led to protein dephosphorylation,which affected its interaction with synaptotagmin 1(Syt1),a calcium sensor protein located in the presynaptic membrane that is critical for CME.STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission,short-term plasticity,and schizophrenia-like behaviors.Moreover,among seven antipsychotic drugs,patients with the C-C(307Pro-851Ala)haplotype responded better to haloperidol than did the T-A(307Ser-851Ser)carriers.The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice.Our findings demonstrated the effect of schizophreniarelated STON2 variations on synaptic dysfunction through the regulation of CME,which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.展开更多
Background:Heterotaxy(HTX)is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease(CHD).The aim of this study was to analyze rare copy number variations(CNVs)in a HTX/CHD cohor...Background:Heterotaxy(HTX)is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease(CHD).The aim of this study was to analyze rare copy number variations(CNVs)in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD.Methods:Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients,and available samples from parents were used to confirm the inheritance pattern.Potential candidate genes in CNVs region were prioritized via the DECIPHER database,and PNPLA4 was identified as the leading candidate gene.To validate,we generated PNPLA4-overexpressing human induced pluripotent stem cell lines as well as pnpla4-overexpressing zebrafish model,followed by a series of transcriptomic,biochemical and cellular analyses.Results:Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients(12.5%).Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort,and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD.PNPLA4 is expressed in the lateral plate mesoderm,which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation,and in the neural crest cell lineage.Through a series of in vivo and in vitro analyses at the molecular and cellular levels,we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production.Conclusions:Our findings demonstrated a significant association between CNVs and HTX/CHD.Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.展开更多
Background:Visceral adipose tissue-derived serine protease inhibitor(vaspin),a secretory adipokine,protects against insulin resistance.Recent studies have demonstrated that serum vaspin levels are decreased in patient...Background:Visceral adipose tissue-derived serine protease inhibitor(vaspin),a secretory adipokine,protects against insulin resistance.Recent studies have demonstrated that serum vaspin levels are decreased in patients with coronary artery disease and that vaspin protects against myocardial ischemia-reperfusion injury and atherosclerosis.However,it remains unclear whether vaspin exerts specific effects on pathological cardiac hypertrophy.Methods:An in vivo study was conducted using a cardiac hypertrophy model established by subcutaneous injection of isoproterenol(ISO)in C57BL/6 and vaspin-ko mice.Rapamycin was administered intraperitoneally to mice,for further study.H9c2 cells and neonatal rat ventricular myocytes(NRVMs)were treated with ISO to induce hypertrophy.Human vaspin fusion protein,the proteasome inhibitor MG132,and chloroquine diphosphate were used for further mechanistic studies.Results:Here,we provide the first evidence that vaspin knockdown results in markedly exaggerated cardiac hypertrophy,fibrosis,and cardiomyocyte senescence in mice treated with ISO.Conversely,the administration of exogenous recombinant human vaspin protected NRVMs in vitro against ISO-induced hypertrophy and senescence.Furthermore,vaspin significantly potentiated the ISO-induced decrease in autophagy.Both rapamycin and chloroquine diphosphate regulated autophagy in vivo and in vitro,respectively,and participated in vaspin-mediated cardioprotection.Moreover,the PI3K-AKT-mTOR pathway plays a critical role in vaspin-mediated autophagy in cardiac tissues and NRVMs.Our data showed that vaspin downregulated the p85 and p110 subunits of PI3K by linking p85 and p110 to NEDD4L-mediated ubiquitination degradation.Conclusion:Our results show,for the first time,that vaspin functions as a critical regulator that alleviates pathological cardiac hypertrophy by regulating autophagy-dependent myocardial senescence,providing potential preventive and therapeutic targets for pathological cardiac hypertrophy.展开更多
In this paper,we study the joint bandwidth allocation and path selection problem,which is an extension of the well-known network utility maximization(NUM)problem,via solving a multi-objective minimization problem unde...In this paper,we study the joint bandwidth allocation and path selection problem,which is an extension of the well-known network utility maximization(NUM)problem,via solving a multi-objective minimization problem under path cardinality constraints.Specifically,such a problem formulation captures various types of objectives including proportional fairness,average delay,as well as load balancing.In addition,in order to handle the"unsplittable flows",path cardinality constraints are added,making the resulting optimization problem quite challenging to solve due to intrinsic nonsmoothness and nonconvexity.Almost all existing works deal with such a problem using relaxation techniques to transform it into a convex optimization problem.However,we provide a novel solution framework based on the linearized alternating direction method of multipliers(LADMM)to split the original problem with coupling terms into several subproblems.We then derive that these subproblems,albeit nonconvex nonsmooth,are actually simple to solve and easy to implement,which can be of independent interest.Under some mild assumptions,we prove that any limiting point of the generated sequence of the proposed algorithm is a stationary point.Numerical simulations are performed to demonstrate the advantages of our proposed algorithm compared with various baselines.展开更多
Dimeric sesquiterpenoids possessing densely substituted 7-norbornenone/7-norbornenol motifs pose a considerable challenge for chemical synthesis. From a strategic perspective, one could envision intermolecular Diels-A...Dimeric sesquiterpenoids possessing densely substituted 7-norbornenone/7-norbornenol motifs pose a considerable challenge for chemical synthesis. From a strategic perspective, one could envision intermolecular Diels-Alder cycloaddition as a straightforward method for assembling alkyl-substituted 7-norbornenones. However, this approach is hindered by lability of the required dienes, namely alkylsubstituted cyclopentadienones. Here we report a one-pot protocol for construction of alkyl-substituted7-norbornenones from electron-deficient olefins and a cyclopentenone derivative. DDQ was found to be an effective oxidant for generating a cyclopentadienone intermediate in situ from the enone. A series of sterically congested 7-norbornenone-containing polycyclic compounds were prepared by using this protocol.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52034009 and 51974319)the Yue Qi Distinguished Scholar Project(Grant No.2020JCB01).
文摘The combination of the dipping effect and hydromechanical(H-M)coupling effect can easily lead to water inrush disasters in water-rich roadways with different dip angles in coal mines.Therefore,H-M coupling tests of bedded sandstones under identical osmotic pressure and various confining pressures were conducted.Then,the evolution curves of stress-strain,permeability and damage,macro-and mesoscopic failure characteristics were obtained.Subsequently,the mechanical behaviour was characterized,and finally the failure mechanism was revealed.The results showed that:(1)The failure of the sandstone with the bedding angle of 45°or 60°was the structure-dominant type,while that with the bedding angle of 0°,30°or 90°was the force-dominant type.(2)When the bedding angle was in the range of(0°,30°)or(45°,90°),the confining pressure played a dominant role in influencing the peak strength.However,withinβ∈(30°,45°),the bedding effect played a dominant role in the peak strength.(3)With the increase in bedding angle,the cohesion increased first,then decreased and finally increased,while the internal friction angle was the opposite.(4)When the bedding angle was 0°or 30°,the“water wedging”effect and the“bedding buckling”effect would lead to the forking or converging shear failure.When the bedding angle was 45°or 60°,the sliding friction effect would lead to the shear slipping failure.When the bedding angle was 90°,the combination of the“bedding buckling”effect and shear effect would lead to the mixed tension-shear failure.The above conclusions obtained are helpful for the prevention of water inrush disasters in water-rich roadways with different dips in coal mines.
文摘The continuous rainy precipitation process from February to March in 2019 was selected to analyze the effect of meteorological service in Tangpu Reservoir basin,so as to sum up service experience and then lay a better foundation for subsequent services.In response to the rainy weather from December 2018 to early 2019,three rounds of flood discharge were carried out in Tangpu Reservoir.During February-March in 2019,the hit rate of short-term area rainfall forecast for Tangpu Reservoir was 80.0%.Compared with the median of forecast interval,the average absolute error was 7.6 mm,and the relative error was 32.7%.The large deviation in the forecast from March 27 to 28 was deeply analyzed,and it is found that the main reasons were excessive reliance on and trust in a single model,insufficient correction of the actual situation,and insufficient judgment of the nature of precipitation.For the future reservoir meteorological service,three aspects of thinking were put forward,such as further strengthening the sharing of hydrological and meteorological information,improving the forecasting ability,and deepening the research of runoff forecast models.
基金Scientific Research Foundation for Ph.D.Programs of Zaozhuang University(21/1020708)Science and Technology Program of Zaozhuang(2020NS20)+1 种基金Project of Shandong Province Higher Educational Science and Technology Program(J18KA134)Shandong Provincial Natural Science Foundation(ZR2019PC011).
文摘Beckmannia syzigachne is a noxious weed for rice-wheat rotations in China.The B.syzigachne(AH-02)population evolved metabolic resistance to fenoxaprop-P-ethyl and mesosulfuron-methyl.To investigate the function of GT73C1 in this population,the GT73C1 gene was amplified by reverse transcription-polymerase chain reaction,and the sequence was 100%consistent with the transcriptome data.Its phylogenetic tree was displayed and annotated using FigTree v1.4.4.The plant overexpression vector of GT73C1 gene was constructed and used to transform Brachypodium distachyon plants.Furthermore,the expression of GT73C1 was significantly induced by fenoxaprop-P-ethyl and mesosulfuron-methyl,which was consistent with the findings from the whole plant bioassay.These results indicate that GT73C1 is closely related to the metabolic resistance of B.distachyon.
文摘The preliminary results of this laboratory (unpublished) indicate that the nutritional value of whole wheat hay (wheat hay, for short) is very high, and the milk stage is the best period of wheat hay harvest. In this study, we investigated the feeding effect and economic benefits using wheat hay instead of alfalfa diet for dairy cows under the condition of the same energy and crude protein levels. Three types of diets were used: alfalfa diet, wheat hay diet and alfalfa + wheat hay diet. The results showed that the dry matter digestibility of alfalfa diet and alfalfa + wheat hay diet did not differ significantly (P > 0.1), but was significantly higher than that of wheat hay diet (P < 0.05). The wheat hay diet could produce more propionic acid and ammonia nitrogen (P < 0.05) in the rumen, and reduce the ratio of acetic/propionic and nitrogen utilization. There was no significant difference in milk production among the three diets (P > 0.1). There was no significant difference in milk somatic cell count and body condition score among the three groups (P > 0.1). The wheat hay diet could significantly increase milk protein and lactose (P contents of interleukin-6 in cows fed alfalfa diet and alfalfa + wheat diet were significantly higher than that in cows fed wheat hay diet (P < 0.05). There was no significant difference in interleukinm-6 between in cows fed alfalfa diet and alfalfa + wheat diet (P > 0.05). The use of wheat hay to replace imported alfalfa in whole or in part could save feed costs. Full substitution of alfalfa with wheat hay could have a daily economic benefit of 13.74 yuan.
文摘[Objectives]The purpose was to standardize the scientific prevention and control of yellow aphids and effectively control their occurrence and spread.[Methods]On the basis of consulting domestic and foreign data and standards extensively,a series of related trials were carried out.[Results]Technical specifications for integrated prevention and control of yellow aphids were formulated.[Conclusions]It is of great significance to the healthy and sustainable development of the fruit trees’industry,the implementation of standardized management,the reduction of pesticide uses,and the reduction of damage caused by yellow aphids to fruit trees,and also provides urgent-needed technical support and guarantee for the prevention and control of yellow aphids.
基金Key Research and Development Program of Hebei Province(19226817D)China Apple Research System(CARS-27)+1 种基金Key Technology R&D Program of Hebei Province(16226312D-2)Basic Research Fund Youth Project of Hebei Academy of Agriculture and Forestry Sciences(2021100102).
文摘[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the material,the vegetative growth,yield and fruit quality of 8 different rootstock-scion combinations were compared.[Results]‘Tianhong 2’/SH6 as self-rooted rootstock had large average single fruit weight(256.33 g),large number of fruits per plant(188.68),the highest yield[(3250.08±23.42)kg/667 m ^(2)]and the highest colored area(93.5%),and the soluble solid content reached the requirement of high quality fruit(15.78%).[Conclusions]In central and southern Hebei Province,‘Tianhong 2’grafted on SH6 self-rooted rootstock has moderate growth,high yield and good fruit quality,so it can be considered as the preferred rootstock-scion combination in the local area.
基金Supported by Talents Construction Project of Science and Technology Innovation,Hebei Academy of Agriculture and Forestry Sciences(C22R0701)Key Research and Development Program of Hebei(21326308D-2-1)China Agriculture Research System-Apple(CARS-27)。
文摘Flowering is a prerequisite for apple fruiting,and apple flower buds are mixed buds,that is,the vegetative organs and flower structure exist in the same terminal bud simultaneously,which are formed in the year before flowering and fruiting,mainly including spur terminal buds and axillary buds.The infrequent formation of flower buds during its growth and biennial bearing are closely related to flower bud differentiation.Therefore,this paper reviews the research progress of flower bud differentiation of apple from the morphological differentiation,plant hormones and flowering-related genes,in order to provide a theoretical reference for efficient cultivation and stable yield of apple.
文摘Apple‘Jiping 1’is a new early maturing apple variety bred by Shijiazhuang Pomology Institute,Hebei Academy of Agriculture and Forestry Sciences.To further normalize the standardized production technology of‘Jiping 1’,realize improvement and upgrading of fruit quality,and improve sustainable development of apple industry,according to national and industrial standards,specific requirements on selection of production orchard,planting,soil,fertilizer and water management,shaping and pruning,flower and fruit management,pest control,and fruit harvesting of‘Jiping 1’are put forward,and technical regulation for production of‘Jiping 1’(standard number:DB 13/T 5167-2020)is made.The regulation has important guiding significance for the production of early maturing apple in Hebei Province.
基金the Efficiency and Performance Engineering Network International Collaboration Fund(award No.of TEPEN-ICF2021-05).
文摘The exploitation of renewable energy has become a pressing task due to climate change and the recent energy crisis caused by regional conflicts.This has further accelerated the rapid development of the global photovoltaic(PV)market,thereby making the management and maintenance of solar photovoltaic(SPV)panels a new area of business as neglecting it may lead to significant financial losses and failure to combat climate change and the energy crisis.SPV panels face many risks that may degrade their power generation performance,damage their structures,or even cause the complete loss of their power generation capacity during their long service life.It is hoped that these problems can be identified and resolved as soon as possible.However,this is a challenging task as a solar power plant(SPP)may contain hundreds even thousands of SPV panels.To provide a potential solution for this issue,a smart drone-based SPV panel condition monitoring(CM)technique has been studied in this paper.In the study,the U-Net neural network(UNNN),which is ideal for undertaking image segmentation tasks and good at handling small sample size problem,is adopted to automatically create mask images from the collected true color thermal infrared images.The support vector machine(SVM),which performs very well in highdimensional feature spaces and is therefore good at image recognition,is employed to classifying the mask images generated by the UNNN.The research result has shown that with the aid of the UNNN and SVM,the thermal infrared images that are remotely collected by drones from SPPs can be automatically and effectively processed,analyzed,and classified with reasonable accuracy(over 80%).Particularly,the mask images produced by the trained UNNN,which contain less interference items than true color thermal infrared images,significantly benefit the assessing accuracy of the health state of SPV panels.It is anticipated that the technical approach presented in this paper will serve as an inspiration for the exploration of more advanced and dependable smart asset management techniques within the solar power industry.
基金supported by the Key Realm R&D Program of Guangdong Province(2019B030335001)the National Natural Science Foundation of China(82330042,81825009,82071541,81971283,82271576,and 82101570)+2 种基金Changping Laboratory(2021B-01-01)the China Postdoctoral Science Foundation(2021M690421)the Non-profit Central Research Institute Chinese Academy of Medical Sciences(2023-PT320-08).
文摘Synaptic dysfunction is a core component of the pathophysiology of schizophrenia.However,the genetic risk factors and molecular mechanisms related to synaptic dysfunction are still not fully understood.The Stonin 2(STON2)gene encodes a major adaptor for clathrin-mediated endocytosis(CME)of synaptic vesicles.In this study,we showed that the C-C(307Pro-851Ala)haplotype of STON2 increases the susceptibility to schizophrenia and examined whether STON2 variations cause schizophrenia-like behaviors through the regulation of CME.We found that schizophrenia-related STON2 variations led to protein dephosphorylation,which affected its interaction with synaptotagmin 1(Syt1),a calcium sensor protein located in the presynaptic membrane that is critical for CME.STON2307Pro851Ala knockin mice exhibited deficits in synaptic transmission,short-term plasticity,and schizophrenia-like behaviors.Moreover,among seven antipsychotic drugs,patients with the C-C(307Pro-851Ala)haplotype responded better to haloperidol than did the T-A(307Ser-851Ser)carriers.The recovery of deficits in Syt1 sorting and synaptic transmission by acute administration of haloperidol effectively improved schizophrenia-like behaviors in STON2307Pro851Ala knockin mice.Our findings demonstrated the effect of schizophreniarelated STON2 variations on synaptic dysfunction through the regulation of CME,which might be attractive therapeutic targets for treating schizophrenia-like phenotypes.
基金supported by the National Key Research and Development Project of China(No.2021YFC2701000)Natural Science Foundation of China(Nos.82270312 and 82370309)+1 种基金Shanghai Basic Research Project of Science and Technology Innovation Action Plan(No.20JC1418300)CAMS Innovation Fund for Medical Sciences(No.2019-I2M-5-002).
文摘Background:Heterotaxy(HTX)is a thoracoabdominal organ anomaly syndrome and commonly accompanied by congenital heart disease(CHD).The aim of this study was to analyze rare copy number variations(CNVs)in a HTX/CHD cohort and to examine the potential mechanisms contributing to HTX/CHD.Methods:Chromosome microarray analysis was used to identify rare CNVs in a cohort of 120 unrelated HTX/CHD patients,and available samples from parents were used to confirm the inheritance pattern.Potential candidate genes in CNVs region were prioritized via the DECIPHER database,and PNPLA4 was identified as the leading candidate gene.To validate,we generated PNPLA4-overexpressing human induced pluripotent stem cell lines as well as pnpla4-overexpressing zebrafish model,followed by a series of transcriptomic,biochemical and cellular analyses.Results:Seventeen rare CNVs were identified in 15 of the 120 HTX/CHD patients(12.5%).Xp22.31 duplication was one of the inherited CNVs identified in this HTX/CHD cohort,and PNPLA4 in the Xp22.31 was a candidate gene associated with HTX/CHD.PNPLA4 is expressed in the lateral plate mesoderm,which is known to be critical for left/right embryonic patterning as well as cardiomyocyte differentiation,and in the neural crest cell lineage.Through a series of in vivo and in vitro analyses at the molecular and cellular levels,we revealed that the biological function of PNPLA4 is importantly involved in the primary cilia formation and function via its regulation of energy metabolism and mitochondria-mediated ATP production.Conclusions:Our findings demonstrated a significant association between CNVs and HTX/CHD.Our data strongly suggested that an increased genetic dose of PNPLA4 due to Xp22.31 duplication is a disease-causing risk factor for HTX/CHD.
基金the State Key Program of the National Natural Science Foundation of China(82030059)National Natural Science Foundation of China(82172178,82072144,81873950,81873953,81300219,81671951)+6 种基金National Key R&D Program of China(2020YFC1512700,2020YFC1512705,2020YFC1512703)National S&T Fundamental Resources Investigation Project(2018FY100600,2018FY100602)Natural Science Foundation of Shandong Province(ZR2022MH078)Key R&D Program of Shandong Province(2019GSF108131)Taishan Pandeng Scholar Program of Shandong Province(tspd20181220)Taishan Young Scholar Program of Shandong Province(tsqn202103173,tsqn20161065,tsqn201812129)Youth Top-Talent Project of National Ten Thousand Talents Plan,and Qilu Young Scholar Program.
文摘Background:Visceral adipose tissue-derived serine protease inhibitor(vaspin),a secretory adipokine,protects against insulin resistance.Recent studies have demonstrated that serum vaspin levels are decreased in patients with coronary artery disease and that vaspin protects against myocardial ischemia-reperfusion injury and atherosclerosis.However,it remains unclear whether vaspin exerts specific effects on pathological cardiac hypertrophy.Methods:An in vivo study was conducted using a cardiac hypertrophy model established by subcutaneous injection of isoproterenol(ISO)in C57BL/6 and vaspin-ko mice.Rapamycin was administered intraperitoneally to mice,for further study.H9c2 cells and neonatal rat ventricular myocytes(NRVMs)were treated with ISO to induce hypertrophy.Human vaspin fusion protein,the proteasome inhibitor MG132,and chloroquine diphosphate were used for further mechanistic studies.Results:Here,we provide the first evidence that vaspin knockdown results in markedly exaggerated cardiac hypertrophy,fibrosis,and cardiomyocyte senescence in mice treated with ISO.Conversely,the administration of exogenous recombinant human vaspin protected NRVMs in vitro against ISO-induced hypertrophy and senescence.Furthermore,vaspin significantly potentiated the ISO-induced decrease in autophagy.Both rapamycin and chloroquine diphosphate regulated autophagy in vivo and in vitro,respectively,and participated in vaspin-mediated cardioprotection.Moreover,the PI3K-AKT-mTOR pathway plays a critical role in vaspin-mediated autophagy in cardiac tissues and NRVMs.Our data showed that vaspin downregulated the p85 and p110 subunits of PI3K by linking p85 and p110 to NEDD4L-mediated ubiquitination degradation.Conclusion:Our results show,for the first time,that vaspin functions as a critical regulator that alleviates pathological cardiac hypertrophy by regulating autophagy-dependent myocardial senescence,providing potential preventive and therapeutic targets for pathological cardiac hypertrophy.
基金supported by the National Natural Science Foundation of China under Grant 11831002。
文摘In this paper,we study the joint bandwidth allocation and path selection problem,which is an extension of the well-known network utility maximization(NUM)problem,via solving a multi-objective minimization problem under path cardinality constraints.Specifically,such a problem formulation captures various types of objectives including proportional fairness,average delay,as well as load balancing.In addition,in order to handle the"unsplittable flows",path cardinality constraints are added,making the resulting optimization problem quite challenging to solve due to intrinsic nonsmoothness and nonconvexity.Almost all existing works deal with such a problem using relaxation techniques to transform it into a convex optimization problem.However,we provide a novel solution framework based on the linearized alternating direction method of multipliers(LADMM)to split the original problem with coupling terms into several subproblems.We then derive that these subproblems,albeit nonconvex nonsmooth,are actually simple to solve and easy to implement,which can be of independent interest.Under some mild assumptions,we prove that any limiting point of the generated sequence of the proposed algorithm is a stationary point.Numerical simulations are performed to demonstrate the advantages of our proposed algorithm compared with various baselines.
基金supported by Ministry of Science and Technology (National Key Research and Development Program of China,Nos. 2019YFC1711000 and 2018YFA0901900)National Natural Science Foundation of China (Nos. 21931014, 21525209, 21621002,21772225, 21761142003 and 82003624)+5 种基金Chinese Academy of Sciences (Strategic Priority Research Program, No. XDB20000000International Partner Program, No. 121731KYSB20190039Key Research Program of Frontier Sciences, No. QYZDB-SSW-SLH040)Science and Technology Commission of Shanghai Municipality (Nos.17XD1404600 and 20YF1458700)State Key Laboratory of Innovative Natural Medicine and Traditional Chinese Medicine Injections(No. QFSKL2017002)K.C. Wong Education Foundation。
文摘Dimeric sesquiterpenoids possessing densely substituted 7-norbornenone/7-norbornenol motifs pose a considerable challenge for chemical synthesis. From a strategic perspective, one could envision intermolecular Diels-Alder cycloaddition as a straightforward method for assembling alkyl-substituted 7-norbornenones. However, this approach is hindered by lability of the required dienes, namely alkylsubstituted cyclopentadienones. Here we report a one-pot protocol for construction of alkyl-substituted7-norbornenones from electron-deficient olefins and a cyclopentenone derivative. DDQ was found to be an effective oxidant for generating a cyclopentadienone intermediate in situ from the enone. A series of sterically congested 7-norbornenone-containing polycyclic compounds were prepared by using this protocol.