期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
熵增工程在电催化反应中的研究进展
1
作者 张新义 任楷 +8 位作者 刘妍宁 谷振一 黄志雄 郑硕航 王晓彤 郭晋芝 Igor V.Zatovsky 曹峻鸣 吴兴隆 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第7期36-42,共7页
目前对高性能与高稳定性的电催化剂进行精准合成仍然是亟待解决的问题。熵作为是最重要的热力学参数之一,是描述体系无序程度的物理量,其数值主要由材料的结构、磁矩、原子和电子振动共同决定。根据体系的构型熵值,我们通常将材料分为... 目前对高性能与高稳定性的电催化剂进行精准合成仍然是亟待解决的问题。熵作为是最重要的热力学参数之一,是描述体系无序程度的物理量,其数值主要由材料的结构、磁矩、原子和电子振动共同决定。根据体系的构型熵值,我们通常将材料分为低熵材料(ΔS_(mix)<1R)、中熵材料(1R≤ΔS_(mix)≥1.5R)和高熵材料(ΔS_(mix)>1.5R)。随着熵值的增加,材料本征的物理与化学性质也会随之发生相应的变化。得益于不同金属元素的共存,在界面处原子级的多组分排列,所产生的协同性高熵效应能够有效地提升电催化反应的活性,因此在电催化领域中得到了广泛的研究关注。本综述对高熵电催化剂的基本概念、合成路线(“自上而下”与“自下而上”)以及在不同电催化反应类型中的高熵材料结构与性能之间的构效关系进行了系统总结,主要包括析氢(HER)、析氧(OER)、氧还原(ORR)、醇氧化(AOR)、氮还原(NRR)和二氧化碳还原反应(CO_(2)RR)等,从而阐明熵增工程对高性能电催化剂设计与应用的优势与潜力。同时,针对目前高熵催化剂研究所面临的主要问题与挑战,对未来基于熵增工程的高熵电催化剂的设计思路与合成方法进行展望。 展开更多
关键词 熵增 合成 电化学 高熵催化剂 电催化
下载PDF
Low-S train and High-Energy KVPO_(4)F Cathode with Multifunctional Stabilizer for Advanced Potassium-Ion Batteries 被引量:1
2
作者 Yongli Heng Zhenyi Gu +6 位作者 jinzhi guo Haojie Liang Yan Liu Wei guo Xinxin Zhao Xiaotong Wang Xinglong Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第5期140-149,共10页
KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause... KVPO_(4)F with excellent structural stability and high operating voltage has been identified as a promising cathode for potassium-ion batteries(PIBs),but limits in sluggish ion transport and severe volume change cause insufficient potassium storage capability.Here,a high-energy and low-strain KVPO_(4)F composite cathode assisted by multifunctional K_(2)C_(4)O_(4)electrode stabilizer is exquisitely designed.Systematical electrochemical investigations demonstrate that this composite cathode can deliver a remarkable energy density up to 530 Wh kg^(-1)with 142.7 mAh g^(-1)of reversible capacity at 25 mA g^(-1),outstanding rate capability of 70.6 mAh g^(-1)at 1000 mA g^(-1),and decent cycling stability.Furthermore,slight volume change(~5%)and increased interfacial stability with thin and even cathode-electrolyte interphase can be observed through in situ and ex situ characterizations,which are attributed to the synergistic effect from in situ potassium compensation and carbon deposition through self-sacrificing K_(2)C_(4)O_(4)additive.Moreover,potassium-ion full cells manifest significant improvement in energy density and cycling stability.This work demonstrates a positive impact of K_(2)C_(4)O_(4)additive on the comprehensive electrochemical enhancement,especially the activation of high-voltage plateau capacity and provides an efficient strategy to enlighten the design of other high-voltage cathodes for advanced high-energy batteries. 展开更多
关键词 high energy density K_(2)C_(4)O_(4) KVPO_(4)F composite cathode low strain potassium-ion batteries
下载PDF
水系锌离子电池用钒基正极材料的研究进展 被引量:23
3
作者 衡永丽 谷振一 +1 位作者 郭晋芝 吴兴隆 《物理化学学报》 SCIE CAS CSCD 北大核心 2021年第3期11-26,共16页
水系锌离子电池(aqueous zinc-ion batteries,AZIBs)具有高安全性、低生产成本、锌资源丰富和环境友好等优点,被认为是未来大规模储能系统中极具发展前景的储能装置。目前,AZIBs的研究关键之一在于开发具有稳定结构和高容量的锌离子可... 水系锌离子电池(aqueous zinc-ion batteries,AZIBs)具有高安全性、低生产成本、锌资源丰富和环境友好等优点,被认为是未来大规模储能系统中极具发展前景的储能装置。目前,AZIBs的研究关键之一在于开发具有稳定结构和高容量的锌离子可脱嵌正极材料。钒基化合物用作AZIBs正极时,表现出可逆容量高和结构丰富可变等特点,受到了广泛的关注和研究。然而,钒基化合物的储锌机理较复杂,不同材料通常表现出各异的电化学性能和储能机理。在本综述中,我们全面地阐述了钒基化合物的储能机制,并探讨了钒基材料在水系锌离子电池中的应用和发展近况,以及它们的性能优化策略。在此基础上,也进一步地展望了水系锌离子电池及其钒基正极材料的发展方向。 展开更多
关键词 水系锌离子电池 正极材料 钒基化合物 电解液 储能机制
下载PDF
Constructing Bidirectional Fluorine-Rich Electrode/Electrolyte Interphase Via Solvent Redistribution toward Long-Term Sodium Battery 被引量:1
4
作者 Xinxin Zhao Zhenyi Gu +6 位作者 jinzhi guo Xiaotong Wang Haojie Liang Dan Xie Wenhao Li Wanqing Jia Xinglong Wu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第6期455-462,共8页
The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercializ... The high concentration electrolytes with specific solvation structure could passivate the electrodes to prolong battery cycle life but at the expense of increased cost,which limits the wide application in commercialization.The regular concentration(1_(M))electrolytes with suitable properties(viscosity,ionic conductivity,etc.)are cost-guaranteed,but undesired reactions would always occur and lead to battery degradation during long cycles.To promote the long-term cycle stability in a cost-effective way,this work constructs bidirectional fluorine-rich electrode/electrolyte interphase(EEI)by redistribution of solvents and electrochemical induction.The fluorinated effect with reasonable zoning planning restricts morphological disintegration,meanwhile,forms spatial confinement on cathode.In particular,the obtained cathode electrolyte interphase(CEI)gets the ample ability of Na^(+)transport,which benefits from the fluorinated organics arranged in the epitaxy and the hemi-carbonate content acting on the thickness.Thus,the electrochemical long cycling performance of F-NVPOFⅡF-CC full cells is significantly enhanced(the decay rate at 1 C per cycle is as low as 0.01%).Such a fluorine-rich EEI engineering is expected to take transitional layers against the degradation of cells and make ultra-long cycle batteries possible. 展开更多
关键词 electrolyte/electrode interphase fluoroethylene carbonate interphase regulation organic fluorinated species sodium ion batteries
下载PDF
Electrode particulate materials for advanced rechargeable batteries:A review
5
作者 Mingyang Ma Miao Du +5 位作者 Yan Liu Hongyan Lü Jialin Yang Zelin Hao jinzhi guo Xinglong Wu 《Particuology》 SCIE EI CAS CSCD 2024年第3期160-181,共22页
The demand for large-scale energy storage is increasing due to the decreasing non-renewable resources and deteriorating environmental pollution.Developing rechargeable batteries with high energy density and long cycle... The demand for large-scale energy storage is increasing due to the decreasing non-renewable resources and deteriorating environmental pollution.Developing rechargeable batteries with high energy density and long cycle performance is an ideal choice to meet the demand of energy storage system.The development of excellent electrode particles is of great significance in the commercialization of nextgeneration batteries.The ideal electrode particles should balance raw material reserves,electrochemical performance,price and environmental protection.Among them,the development of electrode particulate materials with excellent electrochemical properties is the top priority at present.In this review,the typical researches of electrode materials are summarized in terms of crystal structure,morphology,pore structure,surface and interface regulation.Firstly,the structural characteristics and improvement methods of transition metal oxides,polyanionic compounds,Prussian blue and their analogues are introduced.Then,the different effects of particulate morphology,pore,surface and interface structure on the performance of electrode materials are discussed.For designing high-performance electrode materials,preparation route should be set according to the particle properties of the materials and the synergistic effect of various optimization methods should be adopted.At the same time,in addition to the electrode materials,other components of the rechargeable batteries,such as current collector,separator and electrolytes,should be optimized to improve the overall performance of the batteries.This review would provide important guiding principle for designing high-performance electrode particulate materials. 展开更多
关键词 Particulate properties Electrode materials Rechargeable batteries
原文传递
Pseudocapacitive sodium storage of Fe1-xS@N-doped carbon for low-temperature operation 被引量:5
6
作者 Honghong Fan Bowen Qin +4 位作者 Zhiwei Wang Huanhuan Li jinzhi guo Xinglong Wu Jingping Zhang 《Science China Materials》 SCIE EI CSCD 2020年第4期505-515,共11页
Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is a... Constructing potential anodes for sodium-ion batteries(SIBs)with a wide temperature property has captured enormous interests in recent years.Fe1-xS,a zero-band gap material confirmed by density states calculation,is an ideal electrode for fast energy storage on account of its low cost and high theoretical capacity.Herein,Fe1-xS nanosheet wrapped by nitrogen-doped carbon(Fe1-xS@NC)is engineered through a post-sulfidation strategy using Fe-based metal-organic framework(Fe-MOF)as the precursor.The obtained Fe1-xS@NC agaric-like structure can well shorten the charge diffusion pathway,and significantly enhance the ionic/electronic conductivities and the reaction kinetics.As expected,the Fe1-xS@NC electrode,as a prospective SIB anode,delivers a desirable capacity up to 510.2 mA h g^-1 at a high rate of8000 mA g^-1.Additionally,even operated at low temperatures of 0 and-25°C,high reversible capacities of 387.1 and 223.4 mA h g^-1 can still be obtained at 2000 mA g^-1,respectively,indicating its huge potential use at harsh temperatures.More noticeably,the full battery made by the Fe1-xS@NC anode and Na3 V2(PO4)2 O2 F cathode achieves a remarkable rate capacity(186.8 mA h g^-1 at 2000 m A g^-1)and an impressive cycle performance(183.6 m A h g^-1 after 100 cycles at700 mA g^-1)between 0.3 and 3.8 V.Such excellent electrochemical performance is mainly contributed by its pseudocapacitive-dominated behavior,which brings fast electrode kinetics and robust structural stability to the whole electrode. 展开更多
关键词 agaric-like structure sodium ion batteries Fe1-xS low-temperature performance full cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部