Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocom...Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocompatibility,custom shape,and self-healing.Herein,a conductive,stretchable,adaptable,self-healing,and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol(PVA)with sodium tetraborate.The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion.Significantly,owing to the magnetic constituent,the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation.The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions.Additionally,the multifunctional hydrogel displays absorption-dominated electromagnetic interference(EMI)shielding properties.The total shielding performance of the composite hydrogel increases to~62.5 dB from~31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm.The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices.展开更多
The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated...The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.展开更多
This study synthesised a zincic salt(ZS)as a depressant for marmatite-galena separation.The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests.88.89%of the galena was ...This study synthesised a zincic salt(ZS)as a depressant for marmatite-galena separation.The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests.88.89%of the galena was recovered and 83.39%of the marmatite was depressed with ZS dosage of 750 mg·L^(−1)at pH=4.The depression mechanism of ZS on marmatite was investigated by a variety of techniques,including adsorption measurements,Fourier transform infrared(FTIR),X-ray photoelectron spectroscopic(XPS)analysis,and time of flight secondary ion mass spectrometry(ToF-SIMS).Results of adsorption tests and FTIR reveal that ZS adsorbed on marmatite surface and impeded the subsequent adsorption of butyl xanthate(BX).The results of XPS and ToF-SIMS indicate that the ZnO_(2)^(3-)released by ZS could be chemisorbed on the marmatite surface and depress marmatite flotation.展开更多
In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium su...In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite.展开更多
In order to gain practical experience and hands-on skills,full-time professional master degree postgraduate in mineral processing engineering should engage in professional practices.Nonetheless,a series of problems,in...In order to gain practical experience and hands-on skills,full-time professional master degree postgraduate in mineral processing engineering should engage in professional practices.Nonetheless,a series of problems,including insufficient time for practice,low management level,inadequate implementation of the double-supervisor system,and poor results of professional practice,has reduced the effectiveness of professional practice.In view of the aforementioned problems and the characteristics of the discipline,this paper proposes several strategies for improving the effectiveness of professional practice for postgraduates in mineral processing engineering.展开更多
Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation.In this work,inductively coupled plasma optical emission spectrometer(ICP-OES)measurements,Visual MINTEQ ca...Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation.In this work,inductively coupled plasma optical emission spectrometer(ICP-OES)measurements,Visual MINTEQ calculation,X-ray photoelectron spectroscopy(XPS)analysis,time of flight secondary ion mass spectrometry(ToF-SIMS)analysis,and micro-flotation experiments were explored to systematically investigate the effect of ammonium sulfate((NH_(4))_(2)SO_(4))on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation.The results showed that(NH_(4))_(2)SO_(4)exhibited a positive influence on hemimorphite sulfidation flotation.It was ascribed to the number of zinc components in the form of Zn^(2+)and[Zn(NH_(3))_(i)]^(2+)(i=1–4)increased in the flotation system after hemimorphite treatment with(NH_(4))_(2)SO_(4),which was beneficial to its interaction with sulfur species in solution,resulting in a dense and stable zinc sulfide layer generated on the hemimorphite surface.[Zn(NH_(3))_(i)]^(2+)participated in the sulfidation reaction of hemimorphite as a transition state.In addition the sulfidation reaction of hemimorphite was accelerated by(NH_(4))_(2)SO_(4).Thus,(NH_(4))_(2)SO_(4)presents a vital role in promoting the sulfidation of hemimorphite.展开更多
Rare earth element is an important strategic metal,but the supply of high purity rare earth ores is growing slowly,which is in sharp contradiction with the rapidly growing demand.Froth flotation has been confirmed to ...Rare earth element is an important strategic metal,but the supply of high purity rare earth ores is growing slowly,which is in sharp contradiction with the rapidly growing demand.Froth flotation has been confirmed to be an effective method to separate bastnaesite from its gangue minerls.However,the traditional collectors are facing serious problems in flotation separation of minerals,requiring the addition of excess depressant and regulator in the flotation process.Herein,we proposed and synthesized novel Gemini hydroxamic acids Octyl-bishydroxamic acid(OTBHA),Decyl-bishydroxamic acid(DCBHA)and Dodecyl-bishydroxamic acid(DDBHA)as the collectors in bastnaesite-barite flotation system.The effect of different carbon chain lengths on the molecular properties were explored by density functional theory(DFT)calculations.DCBHA possessed a stronger reactivity compared with OCBHA and DDBHA.The flotation results verified the consistency of the computational calculation about the performance prediction of Gemini hydroxamic acids.Compared with OCBHA and DDBHA,DCBHA displayed superior collecting affinity toward bastnaesite,and did not float barite.Zeta potential results showed that the presence of DCBHA increased the potential of bastnaesite,while it had almost no effect on barite,indicating DCBHA had a stronger affinity for bastnaesite.Then,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analyses indicated that the adsorption mechanism was due to two hydroxamate groups of DCBHA co-anchored on bastnaesite surface by forming five-membered hydroxamic―(O―O)―Ce complexes.In addition,atomic force microscopy(AFM)clearly observed that DCBHA uniformly aggregated on bastnaesite surface,which increased surface contact angle and improved the hydrophobicity of bastnaesite.展开更多
Ilmenite is an essential mineral for the extraction of titanium.Conventional physical separation methods have difficulty recovering fine ilmenite,and dressing plants have begun applying flotation to recover ilmenite.T...Ilmenite is an essential mineral for the extraction of titanium.Conventional physical separation methods have difficulty recovering fine ilmenite,and dressing plants have begun applying flotation to recover ilmenite.The interaction of reagent groups with Ti and Fe sites on the ilmenite surface dramatically influences the ilmenite flotation.However,the investigation on Fe sites has received more attention because the activity of Ti is lower than that of Fe.For the activators on ilmenite flotation,most are metal ions but typically lead ions.The metal ions of activators promote ilmenite flotation by increasing the active sites on the ilmenite surface.Combined reagents have a better selective separation of ilmenite than single reagents due to their synergistic effect.Combining the lead ion(Pb^(2+))and the benzyl hydroxamic acid(BHA)into a Pb-BHA complex has a marked effect on ilmenite flotation,which puts forward a new idea of developing combined reagents for ilmenite flotation.This review considers reagent types and action mechanisms in ilmenite flotation.On the basis of the analysis of previous research,a brief future outlook of reagent types and action mechanisms in ilmenite flotation is also proposed in this study.展开更多
Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology.Therefore,in order to satisfy the demands for development in mining,cultiv...Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology.Therefore,in order to satisfy the demands for development in mining,cultivating comprehensive mineral processing engineering professionals with strong innovative practical skills has become the top priority in current education.We have established a new course,“Metallic Mineral Processing,”for students majoring in mineral processing engineering in universities,with coal and other sources of energy as the main focus.This paper analyzes the purpose and significance of setting up this course and the exploration of the reform of the teaching mode,with the aim of improving the teaching quality and ensuring the cultivation of mineral processing engineering undergraduates.展开更多
随着便携式电子产品、电动汽车领域的快速发展,高能量密度锂离子电池的需求度正在日益增加。镍含量在0.6(含)以上的高镍三元材料体系(如LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2),LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)和LiNi_(0.9)Co_(0.05)Mn_(0.05...随着便携式电子产品、电动汽车领域的快速发展,高能量密度锂离子电池的需求度正在日益增加。镍含量在0.6(含)以上的高镍三元材料体系(如LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2),LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)和LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))在截止电压为4.3 V(vs Li^(+)/Li)的条件下,可逆比容量超过200 m Ah·g^(-1),是高比容量正极的重要发展方向。然而,多晶三元材料的机械强度和压实密度较低,且颗粒中的一次晶粒间存在各向异性,导致在充放电过程中会在多晶颗粒内产生晶间裂纹,电解液会沿晶间裂纹向颗粒内部渗透,从而加剧电极-电解液副反应、恶化电池的循环性能和安全性能。采用无晶界的单晶结构设计可以减少晶间裂纹的形成、抑制界面副反应和提高循环稳定性。本文将对单晶高镍三元材料的优势与存在问题进行综述,并对其合成方法和改性策略进行分析,最后,对单晶高镍三元材料的应用前景与面临的挑战进行评述与展望。展开更多
Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and ...Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.展开更多
Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting com...Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk-shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk-shell structures. The yolk-shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk-shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as -43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk-shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.展开更多
基金the financial supports from the National Natural Science Foundation of China(52231007,51725101,11727807,22088101,52271167)the Shanghai Excellent Academic/Technological Leaders Program(19XD1400400)+4 种基金the Ministry of Science and Technology of China(973 Project Nos.2018YFA0209100 and 2021YFA1200600)the Fundamental Research Funds for the Central Universities(2022JCCXHH09)the Foundation for University Youth Key Teachers of Henan Province(2020GGJS170)the Support Program for Scientific and Technological Innovation Talents of Higher Education in Henan Province(21HASTIT004)Key Research Project of Zhejiang Lab(No.2021PE0AC02)。
文摘Hydrogels exhibit potential applications in smart wearable devices because of their exceptional sensitivity to various external stimuli.However,their applications are limited by challenges in terms of issues in biocompatibility,custom shape,and self-healing.Herein,a conductive,stretchable,adaptable,self-healing,and biocompatible liquid metal GaInSn/Ni-based composite hydrogel is developed by incorporating a magnetic liquid metal into the hydrogel framework through crosslinking polyvinyl alcohol(PVA)with sodium tetraborate.The excellent stretchability and fast self-healing capability of the PVA/liquid metal hydrogel are derived from its abundant hydrogen binding sites and liquid metal fusion.Significantly,owing to the magnetic constituent,the PVA/liquid metal hydrogel can be guided remotely using an external magnetic field to a specific position to repair the broken wires with no need for manual operation.The composite hydrogel also exhibits sensitive deformation responses and can be used as a strain sensor to monitor various body motions.Additionally,the multifunctional hydrogel displays absorption-dominated electromagnetic interference(EMI)shielding properties.The total shielding performance of the composite hydrogel increases to~62.5 dB from~31.8 dB of the pure PVA hydrogel at the thickness of 3.0 mm.The proposed bioinspired multifunctional magnetic hydrogel demonstrates substantial application potential in the field of intelligent wearable devices.
基金supported by Yunnan Major Scientific and Technological Projects,China(No.202202AG050015)National Natural Science Foundation of China(No.51504109)。
文摘The activation properties of ammonium oxalate on the flotation of pyrite and arsenopyrite in the lime system were studied in this work.Single mineral flotation tests showed that the ammonium oxalate strongly activated pyrite in high alkalinity and high Ca^(2+)system,whereas arsenopyrite was almost unaffected.In mineral mixtures tests,the recovery difference between pyrite and arsenopyrite after adding ammonium oxalate is more than 85%.After ammonium oxalate and ethyl xanthate treatment,the hydrophobicity of pyrite increased significantly,and the contact angle increased from 66.62°to 75.15°and then to 81.21°.After ammonium oxalate treatment,the amount of ethyl xanthate adsorption on the pyrite surface significantly increased and was much greater than that on the arsenopyrite surface.Zeta potential measurements showed that after activation by ammonium oxalate,there was a shift in the zeta potential of pyrite to more negative values by adding xanthate.X-ray photoelectron spectroscopy test showed that after ammonium oxalate treatment,the O 1s content on the surface of pyrite decreased from 44.03%to 26.18%,and the S 2p content increased from 14.01%to 27.26%,which confirmed that the ammonium oxalatetreated pyrite surface was more hydrophobic than the untreated surface.Therefore,ammonium oxalate may be used as a selective activator of pyrite in the lime system,which achieves an efficient flotation separation of S-As sulfide ores under high alkalinity and high Ca2+concentration conditions.
基金financially supported by the National Natural Science Foundation of China(No.52274283)the Fundamental Research Funds for the Central Universities(No.2022JCCXHH09)+1 种基金the Yueqi Outstanding Scholar award of CUMTB,the Science and Technology Major Project of Ordos City-Iconic Innovation Team(No.202204)the National Key R&D Program of China(Nos.2022YFC2900065 and 2021YFC2902602).
文摘This study synthesised a zincic salt(ZS)as a depressant for marmatite-galena separation.The effect of ZS on the flotation of marmatite and galena was investigated through micro-flotation tests.88.89%of the galena was recovered and 83.39%of the marmatite was depressed with ZS dosage of 750 mg·L^(−1)at pH=4.The depression mechanism of ZS on marmatite was investigated by a variety of techniques,including adsorption measurements,Fourier transform infrared(FTIR),X-ray photoelectron spectroscopic(XPS)analysis,and time of flight secondary ion mass spectrometry(ToF-SIMS).Results of adsorption tests and FTIR reveal that ZS adsorbed on marmatite surface and impeded the subsequent adsorption of butyl xanthate(BX).The results of XPS and ToF-SIMS indicate that the ZnO_(2)^(3-)released by ZS could be chemisorbed on the marmatite surface and depress marmatite flotation.
基金the Fundamental Research Funds for the Central Universities(Nos.2022JCCXHH09 and 2022YJSHH01)the Yueqi Outstanding Scholar award of CUMTB+3 种基金the National Key R&D Program of China(No.SQ2022YFC2900065)the Ordos Science&Technology Plan(No.202204)the National Natural Science Foundation of China(No.52274283)the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2107)。
文摘In this work,the effect of ammonium sulfate on the adsorption characteristics of low-concentration Pb(Ⅱ)ions on the sulfidized hemimorphite surface was comprehensively investigated.The results showed that ammonium sulfate could increase the maximum recovery of hemimorphite from 69.42%to 88.24%under a low concentration of Pb(Ⅱ)ions.On the hemimorphite surface pretreated with ammonium sulfate,the adsorption of Pb(Ⅱ)ions was enhanced and the main species of Pb adsorbed was changed from Pb―O/OH to PbS.This was due to the larger amount of ZnS providing more effective adsorption sites for Pb components to generate Pb S.Meanwhile,the intensity of ZnS decreased with the formation of PbS,demonstrating that ZnS was covered by PbS which formed later on the mineral surface.It was beneficial for the adsorption of butyl xanthate on the hemimorphite surface to form more hydrophobic substances.As a result,ammonium sulfate played a crucial role in realizing the efficient recovery of hemimorphite.
基金This work was supported by The Graduate Education and Teaching Reform Project of CUMTB(YJG202200301)The Yueqi Outstanding Scholar Award of CUMTB and Science and Technology Major Project of Ordos City-Iconic Innovation Team(202204).
文摘In order to gain practical experience and hands-on skills,full-time professional master degree postgraduate in mineral processing engineering should engage in professional practices.Nonetheless,a series of problems,including insufficient time for practice,low management level,inadequate implementation of the double-supervisor system,and poor results of professional practice,has reduced the effectiveness of professional practice.In view of the aforementioned problems and the characteristics of the discipline,this paper proposes several strategies for improving the effectiveness of professional practice for postgraduates in mineral processing engineering.
基金Fundamental Research Funds for the Central Universities(No.2023YQTD03,2022JCCX HH09,2022YJSHH01)the Yueqi Outstanding Scholaraward of China University of Mining&Technology(Beijing)+3 种基金the National Natural Science Foundation of China(No.52274283)the National Key R&D Program of China(No.SQ2022YFC2900065)the Ordos Science&Technology Plan(No.202204&2023XM06)the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF 2107)。
文摘Effectively strengthening the surface sulfidation is essential for recovering hemimorphite by froth flotation.In this work,inductively coupled plasma optical emission spectrometer(ICP-OES)measurements,Visual MINTEQ calculation,X-ray photoelectron spectroscopy(XPS)analysis,time of flight secondary ion mass spectrometry(ToF-SIMS)analysis,and micro-flotation experiments were explored to systematically investigate the effect of ammonium sulfate((NH_(4))_(2)SO_(4))on the formation of zinc sulfide species on hemimorphite surface and its role in sulfidation flotation.The results showed that(NH_(4))_(2)SO_(4)exhibited a positive influence on hemimorphite sulfidation flotation.It was ascribed to the number of zinc components in the form of Zn^(2+)and[Zn(NH_(3))_(i)]^(2+)(i=1–4)increased in the flotation system after hemimorphite treatment with(NH_(4))_(2)SO_(4),which was beneficial to its interaction with sulfur species in solution,resulting in a dense and stable zinc sulfide layer generated on the hemimorphite surface.[Zn(NH_(3))_(i)]^(2+)participated in the sulfidation reaction of hemimorphite as a transition state.In addition the sulfidation reaction of hemimorphite was accelerated by(NH_(4))_(2)SO_(4).Thus,(NH_(4))_(2)SO_(4)presents a vital role in promoting the sulfidation of hemimorphite.
基金the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.51922091,51874247 and 52204285)+1 种基金Sichuan Science and Technology Program(Nos.2023NSFSC1978 and 2022YFS0455)Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05).
文摘Rare earth element is an important strategic metal,but the supply of high purity rare earth ores is growing slowly,which is in sharp contradiction with the rapidly growing demand.Froth flotation has been confirmed to be an effective method to separate bastnaesite from its gangue minerls.However,the traditional collectors are facing serious problems in flotation separation of minerals,requiring the addition of excess depressant and regulator in the flotation process.Herein,we proposed and synthesized novel Gemini hydroxamic acids Octyl-bishydroxamic acid(OTBHA),Decyl-bishydroxamic acid(DCBHA)and Dodecyl-bishydroxamic acid(DDBHA)as the collectors in bastnaesite-barite flotation system.The effect of different carbon chain lengths on the molecular properties were explored by density functional theory(DFT)calculations.DCBHA possessed a stronger reactivity compared with OCBHA and DDBHA.The flotation results verified the consistency of the computational calculation about the performance prediction of Gemini hydroxamic acids.Compared with OCBHA and DDBHA,DCBHA displayed superior collecting affinity toward bastnaesite,and did not float barite.Zeta potential results showed that the presence of DCBHA increased the potential of bastnaesite,while it had almost no effect on barite,indicating DCBHA had a stronger affinity for bastnaesite.Then,Fourier transform infrared(FTIR)and X-ray photoelectron spectroscopy(XPS)analyses indicated that the adsorption mechanism was due to two hydroxamate groups of DCBHA co-anchored on bastnaesite surface by forming five-membered hydroxamic―(O―O)―Ce complexes.In addition,atomic force microscopy(AFM)clearly observed that DCBHA uniformly aggregated on bastnaesite surface,which increased surface contact angle and improved the hydrophobicity of bastnaesite.
基金financially supported by the National Natural Science Foundation of China(No.51764022)the Fok Ying Tong Education Foundation(No.161046)+3 种基金the China Postdoctoral Science Foundation(No.2020M673551XB)the Fundamental Research Funds for Central UniversitiesChina(No.2020XJHH04)the Yueqi Outstanding Scholar Award of China University of Mining and Technology(Beijing)。
文摘Ilmenite is an essential mineral for the extraction of titanium.Conventional physical separation methods have difficulty recovering fine ilmenite,and dressing plants have begun applying flotation to recover ilmenite.The interaction of reagent groups with Ti and Fe sites on the ilmenite surface dramatically influences the ilmenite flotation.However,the investigation on Fe sites has received more attention because the activity of Ti is lower than that of Fe.For the activators on ilmenite flotation,most are metal ions but typically lead ions.The metal ions of activators promote ilmenite flotation by increasing the active sites on the ilmenite surface.Combined reagents have a better selective separation of ilmenite than single reagents due to their synergistic effect.Combining the lead ion(Pb^(2+))and the benzyl hydroxamic acid(BHA)into a Pb-BHA complex has a marked effect on ilmenite flotation,which puts forward a new idea of developing combined reagents for ilmenite flotation.This review considers reagent types and action mechanisms in ilmenite flotation.On the basis of the analysis of previous research,a brief future outlook of reagent types and action mechanisms in ilmenite flotation is also proposed in this study.
基金This study was financially supported by the Undergraduate Education and Teaching Research and Reform Project of CUMTB(J20ZD08,202112)the Yueqi Outstanding Scholar Award of CUMTB.
文摘Social economic growth and the increasing demand for mineral resources have promoted the development of metallic mineral processing technology.Therefore,in order to satisfy the demands for development in mining,cultivating comprehensive mineral processing engineering professionals with strong innovative practical skills has become the top priority in current education.We have established a new course,“Metallic Mineral Processing,”for students majoring in mineral processing engineering in universities,with coal and other sources of energy as the main focus.This paper analyzes the purpose and significance of setting up this course and the exploration of the reform of the teaching mode,with the aim of improving the teaching quality and ensuring the cultivation of mineral processing engineering undergraduates.
文摘随着便携式电子产品、电动汽车领域的快速发展,高能量密度锂离子电池的需求度正在日益增加。镍含量在0.6(含)以上的高镍三元材料体系(如LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2),LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)和LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))在截止电压为4.3 V(vs Li^(+)/Li)的条件下,可逆比容量超过200 m Ah·g^(-1),是高比容量正极的重要发展方向。然而,多晶三元材料的机械强度和压实密度较低,且颗粒中的一次晶粒间存在各向异性,导致在充放电过程中会在多晶颗粒内产生晶间裂纹,电解液会沿晶间裂纹向颗粒内部渗透,从而加剧电极-电解液副反应、恶化电池的循环性能和安全性能。采用无晶界的单晶结构设计可以减少晶间裂纹的形成、抑制界面副反应和提高循环稳定性。本文将对单晶高镍三元材料的优势与存在问题进行综述,并对其合成方法和改性策略进行分析,最后,对单晶高镍三元材料的应用前景与面临的挑战进行评述与展望。
基金supported by the the National Key R&D Program of China(No.2021YFC2900800)National Natural Science Foundation of China(Nos.52425406,51874247,51922091,and 52204285)+4 种基金the Open Research Fund of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2001)Science and Technology Major Project of Ordos City-Iconic Innovation Team and‘‘Rejuvenating Inner Mongolia through Science and Technology”(No.202204/2023)Yueqi Outstanding Scholar Award of CUMTB(No.202022)Funded by Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2023-05)Fundamental Research Funds for the Central Universities(Ph.D.Top Innovative Talents Fund of CUMT BBJ2024048)。
文摘Effectively separating bastnaesite from calcium-bearing gangue minerals(particularly calcite)presents a formidable challenge,making the development of efficient collectors crucial.To achieve this,we have designed and synthesized a novel,highly efficient,water-soluble cationic collector,N-dodecylisopropanolamine(NDIA),for use in the bastnaesite-calcite flotation process.Density functional theory(DFT)calculations identified the amine nitrogen atom in NDIA as the site most susceptible to electrophilic attack and electron loss.By introducing an OH group into the traditional collector dodecylamine(DDA)structure,NDIA provided additional adsorption sites,enabling synergistic adsorption on the surface of bastnaesite,thereby significantly enhancing both the floatability and selectivity of these minerals.The recovery of bastnaesite was 76.02%,while the calcite was 1.26%.The NDIA markedly affected the zeta potential of bastnaesite,while its impact on calcite was relatively minor.Detailed Fourier-transform infrared spectroscopy(FTIR)and X-ray photoelectron spectroscopy(XPS)results elucidated that the―NH―and―OH groups in NDIA anchored onto the bastnaesite surface through robust electrostatic and hydrogen bonding interactions,thereby enhancing bastnaesite's affinity for NDIA.Furthermore,in situ atomic force microscopy(AFM)provided conclusive evidence of NDIA aggregation on the bastnaesite surface,improving contact angle and hydrophobicity,and significantly boosting the flotation recovery of bastnaesite.
基金Acknowledgements The authors appreciate the financial support from the National Natural Science Foundation of China (No. 51402264), and China Postdoctoral Science Foundation (No. 2014M561996).
文摘Yolk-shell ternary composites composed of a Ni sphere core and a SnO2(Ni3Sn2) shell were successfully prepared by a facile two-step method. The size, morphology, microstructure, and phase purity of the resulting composites were characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy (TEM), high-resolution TEM, selected-area electron diffraction, and powder X-ray diffraction. The core sizes, interstitial void volumes, and constituents of the yolk-shell structures varied by varying the reaction time. A mechanism based on the time-dependent experiments was proposed for the formation of the yolk-shell structures. The yolk-shell structures were formed by a synergistic combination of an etching reaction, a galvanic replacement reaction, and the Kirkendall effect. The yolk-shell ternary SnO2 (Ni3Sn2)@Ni composites synthesized at a reaction time of 15 h showed excellent microwave absorption properties. The reflection loss was found to be as low as -43 dB at 6.1 GHz. The enhanced microwave absorption properties may be attributed to the good impedance match, multiple reflections, the scattering owing to the voids between the core and the shell, and the effective complementarities between the dielectric loss and the magnetic loss. Thus, the yolk-shell ternary composites are expected to be promising candidates for microwave absorption applications, lithium ion batteries, and photocatalysis.