期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Enhancing BiVO_(4)photoanode performance by insertion of an epitaxial BiFeO_(3)ferroelectric layer
1
作者 Haejin Jang Yejoon Kim +6 位作者 Hojoong Choi jiwoong yang Yoonsung Jung Sungkyun Choi Donghyeon Lee Ho Won Jang Sanghan Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期71-78,I0003,共9页
BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfacto... BiVO_(4)(BVO)is a promising material as the photoanode for use in photoelectrochemical applications.However,the high charge recombination and slow charge transfer of the BVO have been obstacles to achieving satisfactory photoelectrochemical performance.To address this,various modifications have been attempted,including the use of ferroelectric materials.Ferroelectric materials can form a permanent polarization within the layer,enhancing the separation and transport of photo-excited electron-hole pairs.In this study,we propose a novel approach by depositing an epitaxial BiFeO_(3)(BFO)thin film underneath the BVO thin film(BVO/BFO)to harness the ferroelectric property of BFO.The self-polarization of the inserted BFO thin film simultaneously functions as a buffer layer to enhance charge transport and a hole-blocking layer to reduce charge recombination.As a result,the BVO/BFO photoanodes showed more than 3.5 times higher photocurrent density(0.65 mA cm^(-2))at 1.23 V_(RHE)under the illumination compared to the bare BVO photoanodes(0.18 m A cm^(-2)),which is consistent with the increase of the applied bias photon-to-current conversion efficiencies(ABPE)and the result of electrochemical impedance spectroscopy(EIS)analysis.These results can be attributed to the self-polarization exhibited by the inserted BFO thin film,which promoted the charge separation and transfer efficiency of the BVO photoanodes. 展开更多
关键词 PHOTOELECTROCHEMICAL PHOTOANODE BiVO_(4) Ferroelectric materials BiFeO_(3)
下载PDF
Recent Advances in Patterning Strategies for Full‑Color Perovskite Light‑Emitting Diodes
2
作者 Gwang Heon Lee Kiwook Kim +2 位作者 Yunho Kim jiwoong yang Moon Kee Choi 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期99-137,共39页
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with rem... Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability,pure color emission with remarkably narrow bandwidths,high quantum yield,and solution processability.Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes(PeLEDs)to their theoretical limits,their current fabrication using the spincoating process poses limitations for fabrication of full-color displays.To integrate PeLEDs into full-color display panels,it is crucial to pattern red–green–blue(RGB)perovskite pixels,while mitigating issues such as cross-contamination and reductions in luminous efficiency.Herein,we present state-of-the-art patterning technologies for the development of full-color PeLEDs.First,we highlight recent advances in the development of efficient PeLEDs.Second,we discuss various patterning techniques of MPHs(i.e.,photolithography,inkjet printing,electron beam lithography and laserassisted lithography,electrohydrodynamic jet printing,thermal evaporation,and transfer printing)for fabrication of RGB pixelated displays.These patterning techniques can be classified into two distinct approaches:in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals.This review highlights advancements and limitations in patterning techniques for PeLEDs,paving the way for integrating PeLEDs into full-color panels. 展开更多
关键词 PEROVSKITE Light-emitting diode Full-color display High-resolution patterning ELECTROLUMINESCENCE
下载PDF
Defect engineering of ternary Cu-In-Se quantum dots for boosting photoelectrochemical hydrogen generation 被引量:2
3
作者 Shi Li Sung-Mok Jung +10 位作者 Wookjin Chung Joo-Won Seo Hwapyong Kim Soo Ik Park Hyo Cheol Lee Ji Su Han Seung Beom Ha In Young Kim Su-Il In Jae-Yup Kim jiwoong yang 《Carbon Energy》 SCIE EI CAS CSCD 2023年第12期215-228,共14页
Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly aff... Heavy-metal-free ternary Cu–In–Se quantum dots(CISe QDs)are promising for solar fuel production because of their low toxicity,tunable band gap,and high light absorption coefficient.Although defects significantly affect the photophysical properties of QDs,the influence on photoelectrochemical hydrogen production is not well understood.Herein,we present the defect engineering of CISe QDs for efficient solar-energy conversion.Lewis acid–base reactions between metal halide–oleylamine complexes and oleylammonium selenocarbamate are modulated to achieve CISe QDs with the controlled amount of Cu vacancies without changing their morphology.Among them,CISe QDs with In/Cu=1.55 show the most outstanding photoelectrochemical hydrogen generation with excellent photocurrent density of up to 10.7 mA cm-2(at 0.6 VRHE),attributed to the suitable electronic band structures and enhanced carrier concentrations/lifetimes of the QDs.The proposed method,which can effectively control the defects in heavy-metal-free ternary QDs,offers a deeper understanding of the effects of the defects and provides a practical approach to enhance photoelectrochemical hydrogen generation. 展开更多
关键词 copper-indium-selenide defect engineering photoelectrochemical hydrogen generation quantum dots solar hydrogen
下载PDF
Flexible quantum dot light-emitting diodes for next-generation displays 被引量:19
4
作者 Moon Kee Choi jiwoong yang +1 位作者 Taeghwan Hyeon Dae-Hyeong Kim 《npj Flexible Electronics》 SCIE 2018年第1期76-89,共14页
In the future electronics,all device components will be connected wirelessly to displays that serve as information input and/or output ports.There is a growing demand of flexible and wearable displays,therefore,for in... In the future electronics,all device components will be connected wirelessly to displays that serve as information input and/or output ports.There is a growing demand of flexible and wearable displays,therefore,for information input/output of the nextgeneration consumer electronics.Among many kinds of light-emitting devices for these next-generation displays,quantum dot light-emitting diodes(QLEDs)exhibit unique advantages,such as wide color gamut,high color purity,high brightness with low turn-on voltage,and ultrathin form factor.Here,we review the recent progress on flexible QLEDs for the next-generation displays.First,the recent technological advances in device structure engineering,quantum-dot synthesis,and high-resolution full-color patterning are summarized.Then,the various device applications based on cutting-edge quantum dot technologies are described,including flexible white QLEDs,wearable QLEDs,and flexible transparent QLEDs.Finally,we showcase the integration of flexible QLEDs with wearable sensors,micro-controllers,and wireless communication units for the next-generation wearable electronics. 展开更多
关键词 DIODES quantum light
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部