HKT transport protein is an ion transporter thai exists on plasmalemma and a ubiquitous transmembrane protein responsible for Na + transport and K+ - Na + symport. HKT transport protein is regulated by the expressi...HKT transport protein is an ion transporter thai exists on plasmalemma and a ubiquitous transmembrane protein responsible for Na + transport and K+ - Na + symport. HKT transport protein is regulated by the expression of ItKT family genes. The overexpression of HKT family genes can improve activity of Na+ transport and K+ - Na+ s.vmport proteins in plants, lead to Na + recycle, reduce Na + concentration in vivo, maintain K +/Na+ ratio, and ensure normal physiological functions of eells, thereby improving salt toleranee of plants. This paper introduced the discovery and claning of HKT family genes, revealed interactions between HKT family genes and SOS, NHX genes, and summarized the relationship between the structure, function of HKT protein and salt tolerance of plants to clarify the function and mechanism of action of HKT transport protein, aiming at laying the foundation for genetic engineering of plants for salt tolerauee and providing basis for breeding haloduric transgenie plant.展开更多
Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and ...Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel.展开更多
Topologically associating domain(TAD)reorganization commonly occurs in the cell nucleus and contributes to gene activation and inhibition through the separation or fusion of adjacent TADs.However,functional genes impa...Topologically associating domain(TAD)reorganization commonly occurs in the cell nucleus and contributes to gene activation and inhibition through the separation or fusion of adjacent TADs.However,functional genes impacted by TAD alteration and the underlying mechanism of TAD reorganization regulating gene transcription remain to be fully elucidated.Here,we first developed a novel approach termed Inter3D to specifically identify genes regulated by TAD reorganization.Our study revealed that the segregation of TADs led to the disruption of intrachromosomal looping at the myosin light chain 12B(MYL12B)locus,via the meticulous reorganization of TADs mediating epigenomic landscapes within tumor cells,thereby exhibiting a significant correlation with the down-regulation of its transcriptional activity.Conversely,the fusion of TADs facilitated intrachromosomal interactions,suggesting a potential association with the activation of cytochrome P450 family 27 subfamily B member 1(CYP27B1).Our study provides comprehensive insight into the capture of TAD rearrangement-mediated gene loci and moves toward understanding the functional role of TAD reorganization in gene transcription.The Inter3D pipeline developed in this study is freely available at https://github.com/bm2-lab/inter3D and https://ngdc.cncb.ac.cn/biocode/tool/BT7399.展开更多
基金supported by the High Technology Research and Development Program of Jilin(20130204021GX)the Specialized Research Fund for Graduate Course Identification System Program(Jilin University)of China(450060523183)+2 种基金the National Natural Science Foundation of China(61520106008,U1564207,61503149)the Education Department of Jilin Province of China(2016430)the Graduate Innovation Fund of Jilin University(2016030)
基金Supported by Graduate Science and Technology Innovation Project of Inner Mongolia Autonomous Region(S2016013604)National Natural Science Foundation of China(31260336)
文摘HKT transport protein is an ion transporter thai exists on plasmalemma and a ubiquitous transmembrane protein responsible for Na + transport and K+ - Na + symport. HKT transport protein is regulated by the expression of ItKT family genes. The overexpression of HKT family genes can improve activity of Na+ transport and K+ - Na+ s.vmport proteins in plants, lead to Na + recycle, reduce Na + concentration in vivo, maintain K +/Na+ ratio, and ensure normal physiological functions of eells, thereby improving salt toleranee of plants. This paper introduced the discovery and claning of HKT family genes, revealed interactions between HKT family genes and SOS, NHX genes, and summarized the relationship between the structure, function of HKT protein and salt tolerance of plants to clarify the function and mechanism of action of HKT transport protein, aiming at laying the foundation for genetic engineering of plants for salt tolerauee and providing basis for breeding haloduric transgenie plant.
基金supported by the National Natural Science Foundation of China Youth Program(Grant No.51905328).
文摘Computational fluid dynamics was used and a numerical simulation analysis of boiling heat transfer in microchannels with three depths and three cross-sectional profiles was conducted.The heat transfer coefficient and bubble generation process of three microchannel structures with a width of 80μm and a depth of 40,60,and 80μm were compared during the boiling process,and the factors influencing bubble generation were studied.A visual test bench was built,and test substrates of different sizes were prepared using a micro-nano laser.During the test,the behavior characteristics of the bubbles on the boiling surface and the temperature change of the heated wall were collected with a high-speed camera and a temperature sensor.It was found that the microchannel with a depth of 80μm had the largest heat transfer coefficient and shortest bubble growth period,the rectangular channel had a larger peak heat transfer coefficient and a lower frequency of bubble occurrence,while the V-shaped channel had the shortest growth period,i.e.,the highest frequency of bubble occurrence,but its heat transfer coefficient was smaller than that of the rectangular channel.
基金supported by the National Natural Science Foundation of China(Grant Nos.82372705 and 31870748)the Shanghai Oriental Elite Project(Grant No.2000152009)+7 种基金the National Key R&D Program of China(Grant No.2017YFE0196300)the Shanghai Natural Science Foundation(Grant No.22ZR1466100)the Fundamental Research Funds for the Central Universities(Grant No.22120230292)the China Postdoctoral Science Foundation(Grant Nos.2023M742651 and GZC20231946)the Shuguang Project of Shanghai Municipal Education Commission and Shanghai Education Development Foundation(Grant No.17SG19)the Outstanding Yong Medical Scholar of Shanghai Municipal Commission of Health and Family Planning(Grant No.2017YQ067)the Outstanding Yong Scholar Grant of Tongji University(Grant No.PA2019000239)the Startup Funding of Frontier Science Research Center for Stem Cells&Shanghai East Hospital of Tongji University(Grant No.DFRC2019003),China.
文摘Topologically associating domain(TAD)reorganization commonly occurs in the cell nucleus and contributes to gene activation and inhibition through the separation or fusion of adjacent TADs.However,functional genes impacted by TAD alteration and the underlying mechanism of TAD reorganization regulating gene transcription remain to be fully elucidated.Here,we first developed a novel approach termed Inter3D to specifically identify genes regulated by TAD reorganization.Our study revealed that the segregation of TADs led to the disruption of intrachromosomal looping at the myosin light chain 12B(MYL12B)locus,via the meticulous reorganization of TADs mediating epigenomic landscapes within tumor cells,thereby exhibiting a significant correlation with the down-regulation of its transcriptional activity.Conversely,the fusion of TADs facilitated intrachromosomal interactions,suggesting a potential association with the activation of cytochrome P450 family 27 subfamily B member 1(CYP27B1).Our study provides comprehensive insight into the capture of TAD rearrangement-mediated gene loci and moves toward understanding the functional role of TAD reorganization in gene transcription.The Inter3D pipeline developed in this study is freely available at https://github.com/bm2-lab/inter3D and https://ngdc.cncb.ac.cn/biocode/tool/BT7399.