期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance
1
作者 Yang Feng Zhaohui Sun +6 位作者 Yueran Qi Xuepeng Zhan Junyu Zhang Jing Liu Masaharu Kobayashi jixuan wu Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期33-37,共5页
With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attra... With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators. 展开更多
关键词 NOR flash memory computing-in-memory ENDURANCE neural network online training
下载PDF
Thin film ferroelectric photonic-electronic memory
2
作者 Gong Zhang Yue Chen +12 位作者 Zijie Zheng Rui Shao Jiuren Zhou Zuopu Zhou Leming Jiao Jishen Zhang Haibo Wang Qiwen Kong Chen Sun Kai Ni jixuan wu Jiezhi Chen Xiao Gong 《Light(Science & Applications)》 SCIE EI CSCD 2024年第10期2251-2262,共12页
To reduce system complexity and bridge the interface between electronic and photonic circuits,there is a high demand for a non-volatile memory that can be accessed both electrically and optically.However,practical sol... To reduce system complexity and bridge the interface between electronic and photonic circuits,there is a high demand for a non-volatile memory that can be accessed both electrically and optically.However,practical solutions are still lacking when considering the potential for large-scale complementary metal-oxide semiconductor compatible integration.Here,we present an experimental demonstration of a non-volatile photonic-electronic memory based on a 3-dimensional monolithic integrated ferroelectric-silicon ring resonator.We successfully demonstrate programming and erasing the memory using both electrical and optical methods,assisted by optical-to-electrical-to-optical conversion.The memory cell exhibits a high optical extinction ratio of 6.6 dB at a low working voltage of 5 V and an endurance of 4×104 cycles.Furthermore,the multi-level storage capability is analyzed in detail,revealing stable performance with a raw bit-error-rate smaller than 5.9×10−2.This ground-breaking work could be a key technology enabler for future hybrid electronic-photonic systems,targeting a wide range of applications such as photonic interconnect,high-speed data communication,and neuromorphic computing. 展开更多
关键词 RESONATOR ELECTRONIC FERROELECTRIC
原文传递
Flash-based in-memory computing for stochastic computing in image edge detection 被引量:1
3
作者 Zhaohui Sun Yang Feng +6 位作者 Peng Guo Zheng Dong Junyu Zhang Jing Liu Xuepeng Zhan jixuan wu Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2023年第5期145-149,共5页
The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bott... The“memory wall”of traditional von Neumann computing systems severely restricts the efficiency of data-intensive task execution,while in-memory computing(IMC)architecture is a promising approach to breaking the bottleneck.Although variations and instability in ultra-scaled memory cells seriously degrade the calculation accuracy in IMC architectures,stochastic computing(SC)can compensate for these shortcomings due to its low sensitivity to cell disturbances.Furthermore,massive parallel computing can be processed to improve the speed and efficiency of the system.In this paper,by designing logic functions in NOR flash arrays,SC in IMC for the image edge detection is realized,demonstrating ultra-low computational complexity and power consumption(25.5 fJ/pixel at 2-bit sequence length).More impressively,the noise immunity is 6 times higher than that of the traditional binary method,showing good tolerances to cell variation and reliability degradation when implementing massive parallel computation in the array. 展开更多
关键词 in-memory computing stochastic computing NOR flash memory image edge detection
下载PDF
P-type cold-source field-effect transistors with TcX_(2) and ReX_(2)(X=S,Se)cold source electrodes:A computational study
4
作者 汪倩文 武继璇 +2 位作者 詹学鹏 桑鹏鹏 陈杰智 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第12期54-60,共7页
Cold-source field-effect transistors(CS-FETs)have been developed to overcome the major challenge of power dissipation in modern integrated circuits.Cold metals suitable for n-type CS-FETs have been proposed as the ide... Cold-source field-effect transistors(CS-FETs)have been developed to overcome the major challenge of power dissipation in modern integrated circuits.Cold metals suitable for n-type CS-FETs have been proposed as the ideal electrode to filter the high-energy electrons and break the thermal limit on subthreshold swing(SS).In this work,regarding the p-type CS-FETs,we propose TcX_(2) and ReX_(2)(X=S,Se)as the injection source to realize the sub-thermal switching for holes.First-principles calculations unveils the cold-metal characteristics of monolayer TcX_(2) and ReX_(2),possessing a sub-gap below the Fermi level and a decreasing DOS with energy.Quantum device simulations demonstrate that TcX_(2) and ReX_(2) can enable the cold source effects in WSe_(2) p-type FETs,achieving steep SS of 29-38 mV/dec and high on/off ratios of(2.3-5.6)×10^(7).Moreover,multilayer Re S2retains the cold metal characteristic,thus ensuring similar CS-FET performances to that of the monolayer source.This work underlines the significance of cold metals for the design of p-type CS-FETs. 展开更多
关键词 cold metal steep-slope transistor subthreshold swing quantum device simulations
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部