期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Double enzyme mimetic activities of multifunctional Ag nanoparticle-decorated Co_(3)V_(2)O_(8)hollow hexagonal prismatic pencils for application in colorimetric sensors and disinfection
1
作者 Ying Gao Peng Ju +4 位作者 Yu Zhang Yuxin Zhang Xiaofan Zhai jizhou duan Baorong Hou 《Nano Materials Science》 EI CAS CSCD 2024年第2期244-255,共12页
Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with ... Since the catalytic activity of most nanozymes is still far lower than the corresponding natural enzymes,there is urgent need to discover novel highly efficient enzyme-like materials.In this work,Co_(3)V_(2)O_(8)with hollow hexagonal prismatic pencil structures were prepared as novel artificial enzyme mimics.They were then decorated by photo-depositing Ag nanoparticles(Ag NPs)on the surface to further improve its catalytic activities.The Ag NPs decorated Co_(3)V_(2)O_(8)(ACVPs)showed both excellent oxidase-and peroxidase-like catalytic activities.They can oxidize the colorless 3,3’,5,5’-tetramethylbenzidine rapidly to induce a blue change.The enhanced enzyme mimetic activities can be attributed to the surface plasma resonance(SPR)effect of Ag NPs as well as the synergistic catalytic effect between Ag NPs and Co_(3)V_(2)O_(8),accelerating electron transfer and promoting the catalytic process.ACVPs were applied in constructing a colorimetric sensor,validating the occurrence of the Fenton reaction,and disinfection,presenting favorable catalytic performance.The enzyme-like catalytic mechanism was studied,indicating the chief role of⋅O_(2)-radicals in the catalytic process.This work not only discovers a novel functional material with double enzyme mimetic activity but also provides a new insight into exploiting artificial enzyme mimics with highly efficient catalytic ability. 展开更多
关键词 Co_(3)V_(2)O_(8) Ag NPs Enzyme mimetic Colorimetric sensor DISINFECTION
下载PDF
Developing high photocatalytic antibacterial Zn electrodeposited coatings through Schottky junction with Fe3+-doped alkalized g-C_(3)N_(4) photocatalysts
2
作者 Ying Gao Xiaofan Zhai +6 位作者 Yuxin Zhang Fang Guan Nazhen Liu Xiutong Wang Jie Zhang Baorong Hou jizhou duan 《Nano Materials Science》 EI CAS CSCD 2023年第2期177-188,共12页
Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electr... Pure Zn coatings easily lose their protective performance after biofouling because they have no antibacterial effect under visible light.In this study,we fabricate a new antibacterial Zn composite coating using electrodeposition to couple Fe3+-doped alkalized g-C_(3)N_(4)(AKCN-Fe)into an existing Zn coating and show that the AKCN-Fe enhances antibacterial property of the Zn coating under visible light.We attribute this enhancement to the high photocatalytic performance,high loading content,and good dispersion of AKCN-Fe.In addition,the photocatalytic antibacterial mechanism of the composite coating is supported by scavenger experiments and electron paramagnetic resonance(EPR)measurements,suggesting that superoxide(·O_(2)^(-))and hydroxyl radical(·OH)play main and secondary roles,respectively. 展开更多
关键词 g-C_(3)N_(4) ELECTRODEPOSITION Zn coating Photocatalytic antibacterial mechanism
下载PDF
The corrosion behavior of Mg-Nd binary alloys in the harsh marine environment 被引量:5
3
作者 Quantong Jiang Dongzhu Lu +4 位作者 Ning Wang Xiutong Wang Jie Zhang jizhou duan Baorong Hou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第1期292-304,共13页
The corrosion behavior of Mg-Nd binary alloys in the harsh South China Sea environment was researched by scanning electron microscopy,energy-dispersive spectrometry and X-ray diffraction analysis.In order to explain t... The corrosion behavior of Mg-Nd binary alloys in the harsh South China Sea environment was researched by scanning electron microscopy,energy-dispersive spectrometry and X-ray diffraction analysis.In order to explain the corrosion mechanism,corrosion resistance was analyzed by weight loss rate and electrochemical measurement in the laboratory.With a continuous enlargement of Nd-content,Mg 12 Nd phases increased and multiplied.The weight loss rate of Mg-0.5Nd alloy was 0.0436 mg·cm^(-2)·y^(-1)(0.0837 mm·y^(-1)),whereas that of Mg-1.5Nd alloy was 0.0294 mg·cm^(-2)·y^(-1)(0.0517 mm·y^(-1))during the exposure corrosion in the South China Sea site.The mechanical strength of Mg-1.5Nd alloy was 148 MPa before the exposure in the harsh marine environment,while the residual mechanical strength was merely about 94 MPa after the exposure test.Both Mg-1.5Nd alloy and Mg-1.0Nd alloy occurred the brittle fracture,which resulted that the elongation was nearly equal to zero.The self-corrosion current density demonstrated that degradation rate of Mg-Nd binary alloys was as follows:Mg-0.5Nd>Mg-1.0Nd>Mg-1.5Nd.For the South China Sea corrosion site,a large amount of sea salts exited in the atmospheric environment.Due to the heavy rainfall and high humidity,sodium chloride in the atmospheric environment dissolved,more serious electrochemical corrosion occurred on the surface of Mg-Nd binary alloys. 展开更多
关键词 Magnesium alloy CORROSION South China sea environment
下载PDF
Chloride-binding capacity of mortars composed of marine sand subjected to external chloride penetration 被引量:1
4
作者 Congtao SUN Ming SUN +5 位作者 Tao TAO Feng QU Gongxun WANG Peng ZHANG Yantao LI jizhou duan 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2022年第4期1462-1471,共10页
In order to explore the interactional relations of internal chloride and external chloride-binding amongst the cementitious materials,the chloride-binding capacity of mortars composed of marine sand(MS)or washed marin... In order to explore the interactional relations of internal chloride and external chloride-binding amongst the cementitious materials,the chloride-binding capacity of mortars composed of marine sand(MS)or washed marine sand(WMS)were investigated.Results indicate that more external chloride can penetrate and diff use more deeply into the WMS mortar than that in the MS mortar.This phenomenon suggests that the external chloride migration resistance due to WMS is lower than that caused by MS.The distribution trends of the bound chloride content in the two types of mortars are the same at diff erent immersion times.However,a signifi cantly decreased area of the bound chloride content exists at the border of the external penetration area(EPA)and the external unaff ected area(EUA)at the immersion ages of 3 and 7 d,and then it disappears gradually with immersion time.The WMS mortar can bind more external chloride,whereas the MS mortar can bind more internal chloride,at diff erent immersion times.The distributions of bound chloride conversion rate in the EPAs of the two types of mortars diff er across immersion times.The distribution fi rstly decreases,and then it increases at the immersion ages of 3 and 7 d.The distribution was from increase,then decreases,and increase again at the immersion ages of 28 and 56 d.The bound chloride conversion rate in the WMS mortar is aff ected more greatly by external chloride penetration than that in the MS mortar.The amounts of the Friedel’s salt tend to increase with prolonged immersion time.Finally,the penetration of external chloride can increase the amount of fi ne capillary pores smaller than 100 nm in the WMSmortar exposed for 56 d in the chloride salt solution(WMS-E)specimen. 展开更多
关键词 marine sand MORTAR chloride binding Friedel’s salt pore structure
下载PDF
Effect of Sulfate-reducing Bacteria on Corrosion Behavior of Mild Steel in Sea Mud 被引量:1
5
作者 Xiaodong ZHAO jizhou duan +1 位作者 Baorong HOU Suru WU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期323-328,共6页
Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior ... Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM) combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process. 展开更多
关键词 Microbiologically influenced corrosion (MIC) Sulfate-reducing bacteria (SRB) Mild steel Sea mud
下载PDF
A universal design for triggering the precise micro-structure reconstruction through in-situ electro-regulating to boost the pseudocapacitance of MnO_(2)
6
作者 Lijin Yan Jiangyu Hao +8 位作者 Baibai Liu Xuefeng Zou Qibin Wu Jin Hou jizhou duan Shicheng Wei Yang Zhou Bin Xiang Baorong Hou 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第11期184-197,I0006,共15页
Developing a precise controllable strategy for modulating the micro-morphology,atom coordination environment,and electronic structure of electrode materials is crucial for the performance in the field of energy storag... Developing a precise controllable strategy for modulating the micro-morphology,atom coordination environment,and electronic structure of electrode materials is crucial for the performance in the field of energy storage,yet still a tremendous challenge.Herein,a facile and universal in-situ electrochemical self-optimization design,electro-regulating,is designed to controllably produce electrode materials with abundant defects.Through detailed characterization studies,the microstructure of MnO_(2) is reconstructed after electro-regulating,which exhibits a structure of small fragments with numerous holes due to the partial self-dissolution of acidic oxides under an alkaline operating environment.Furthermore,the electro-regulating strategy not only presents the formation steps of numerous holes but is also accompanies by a number of O vacancies generation process due to the activation of an external electric field.This study provides a new inspiration for reasonably designing advanced functional electrode materials for various electrochemical applications and beyond. 展开更多
关键词 Electro-regulating Microstructure reconstructed MnO_(2) Corrosion resistance Supercapacitors
下载PDF
Green synthesis of functional metallic nanoparticles by dissimilatory metal-reducing bacteria“Shewanella”:A comprehensive review
7
作者 Jing Yang Peng Ju +5 位作者 Xucheng Dong jizhou duan Hui Xiao Xuexi Tang Xiaofan Zhai Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第27期63-76,共14页
The biosynthesis strategy of nanoparticles has attracted much attention due to the mild synthesis condi-tions,environmental-friendly properties,and low costs.Biosynthesized nanoparticles(bio-NPs)not only show excellen... The biosynthesis strategy of nanoparticles has attracted much attention due to the mild synthesis condi-tions,environmental-friendly properties,and low costs.Biosynthesized nanoparticles(bio-NPs)not only show excellent physicochemical properties,but also exhibit high stability,enlarged specific surface area,and excellent biocompatibility,which are crucial for industrial,agricultural,and medical fields.She-wanella,a kind of dissimilatory metal-reducing bacteria,is regarded as a typical biosynthesis-functional bacteria class with wide distribution and strong adaptability.Thus,in this paper,functional bio-NPs by Shewanella were reviewed to provide a comprehensive view of current research progress.The biosynthetic mechanisms of Shewanella are summarized as the Mtr pathway(predominant),extracellular polymeric substance-induced pathway,and enzyme/protein-induced pathway.During the biosynthesis process,bio-logical factors along with the physicochemical parameters highly influenced the properties of the resul-tant bio-NPs.Till now,bio-NPs have been applied in various fields including environmental remediation,antibacterial applications,and microbial fuel cells.However,some challenging issues of bio-NPs by She-wanella remain unsolved,such as optimizing suitable bacterial strains,intelligently controlling bio-NPs,clarifying biosynthesis mechanisms,and expanding bio-NPs applications. 展开更多
关键词 Shewanella strains Functional metallic nanoparticles Green biosynthesis Metal reduction
原文传递
Interaction between sulfate-reducing bacteria and aluminum alloys——Corrosion mechanisms of 5052 and Al-Zn-In-Cd aluminum alloys 被引量:7
8
作者 Fang Guan jizhou duan +4 位作者 Xiaofan Zhai Nan Wang Jie Zhang Dongzhu Lu Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第1期55-64,共10页
Microbiologically influenced corrosion caused by sulfate-reducing bacteria(SRB) poses a serious threat to marine engineering facilities.This study focused on the interaction between the corrosion behavior of two alumi... Microbiologically influenced corrosion caused by sulfate-reducing bacteria(SRB) poses a serious threat to marine engineering facilities.This study focused on the interaction between the corrosion behavior of two aluminum alloys and SRB metabolic activity.SRB growth curve and sulfate variation with and with aluminum were performed to find the effect of two aluminum alloys on SRB metabolic activity.Corrosion of 5052 aluminum alloy and Al-Zn-In-Cd aluminum alloy with and without SRB were performed.The results showed that both the presence of 5052 and Al-Zn-In-Cd aluminum alloy promoted SRB metabolic activity,with the Al-Zn-In-Cd aluminum alloy having a smaller promotion effect compared with 5052 aluminum alloy.The electrochemical results suggested that the corrosion of the Al-Zn-In-Cd aluminum alloy was accelerated substantially by SRB.Moreover,SRB led to the transformation of Al-Zn-In-Cd aluminum alloy corrosion product from Al(OH)3 to Al2 S3 and NaAlO2. 展开更多
关键词 ALUMINUM ALLOY Sulfate-reducing bacteria(SRB) ELECTROCHEMICAL behavior Corrosion
原文传递
Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness 被引量:6
9
作者 Binbin Zhang jizhou duan +1 位作者 Yanliang Huang Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第12期1-11,共11页
Nature-inspired superhydrophobic coatings with typical Cassie-Baxter contacts garner numerous interests for multifunctional applications.However,undesirable poor mechanical and thermal stability are still crucial bott... Nature-inspired superhydrophobic coatings with typical Cassie-Baxter contacts garner numerous interests for multifunctional applications.However,undesirable poor mechanical and thermal stability are still crucial bottlenecks for real-world employment.This work introduces a cost-effective,fluorine free and versatile strategy to achieve double-layered PDMS agglutinated candle soot coating with superior water-repellent superhydrophobicity.The surface morphologies,chemical compositions and wettability behaviors were investigated in detail.The mechanical stability,chemical stability and durable corrosion resistance of the fabricated PDMS-CS coating were evaluated through friction,calcination and electrochemical impedance spectroscopy.The results demonstrate a remarkably enhanced mechanical robustness and corrosion resistance,indicating PDMS units can act as an effective agglutinating agent between candle soot and underlying substrate.The synergistic effect of PDMS agglutination,porous network nanostructures and extremely low surface energy of incomplete combustion induced candle soot deposition contribute to the eventually robust corrosion resisting coating,which greatly increases the possibility for practical applications. 展开更多
关键词 Corrosion Coating PDMS Candle soot ROBUSTNESS SUPERHYDROPHOBIC
原文传递
Poly(dimethyl siloxane)anti-corrosion coating with wide pH-responsive and self-healing performance based on core-shell nanofiber containers 被引量:6
10
作者 Xiaohong Ji Wei Wang +5 位作者 Xia Zhao Lifei Wang Fubin Ma Yanli Wang jizhou duan Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第6期128-145,共18页
In this research,core-shell electrospun fibers loaded with the shell of cellulose acetate and the core of oleic acid and alkyd varnish resin were synthesized and used within poly(dimethyl siloxane)(PDMS)to prepare sel... In this research,core-shell electrospun fibers loaded with the shell of cellulose acetate and the core of oleic acid and alkyd varnish resin were synthesized and used within poly(dimethyl siloxane)(PDMS)to prepare self-healing and p H-responsive coatings for a steel substrate.The morphology of the electrospun fibers was characterized by scanning electron microscopy,transmission electron microscopy and confocal fluorescence microscopy.Thermo gravimetric analysis and Fourier transform infrared spectroscopy revealed that the self-healing agents were loaded successfully with a loading rate of 2.9%.The properties of the fiber-PDMS composite coating were characterized by water contact angle measurements,mechanical tests,electrochemical impedance spectroscopy,and scanning Kelvin probe.Results show that the maximum self-healing efficiencies of the fiber-PDMS coating in alkaline and acidic solution are 95.96%and 97.04%,respectively.The composition of the self-healing agents at the damaged part of the coating was verified by an infrared mapping test and using an energy dispersive spectrometer.In addition,the sandpaper abrasion test shows the hydrophobic effect of fiber-PDMS coating remains above 88.2%and decreases slightly through the addition of abrasion cycles.This research can pave the way for the industrial applications of p H-responsive self-healing coatings. 展开更多
关键词 Core-shell fibers Self-healing coating Oleic acid Hydrophobic effect
原文传递
Facile fabrication of self-healing silicone-based poly(urea-thiourea)/tannic acid composite for anti-biofouling 被引量:3
11
作者 Jiawen Sun Chao Liu +6 位作者 jizhou duan Jie Liu Xucheng Dong Yimeng Zhang Ning Wang Jing Wang Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第29期1-13,共13页
A novel silicone-based poly(urea-thiourea)/tannic acid composite(PDMS-P(Ua-TUa)-TA)with excellent mechanical,self-healing and antifouling properties is developed.The multiple dynamic hydrogen bonds formed by thiourea ... A novel silicone-based poly(urea-thiourea)/tannic acid composite(PDMS-P(Ua-TUa)-TA)with excellent mechanical,self-healing and antifouling properties is developed.The multiple dynamic hydrogen bonds formed by thiourea groups,urea groups,and tannic acid(TA)molecules ensured a tough elastomer(ultimate strength:2.47 MPa)with high stretchability(~1000%).TA molecules as partial hydrogen bonding cross-linking sites interacted rapidly with urea and thiourea groups before the migration of polymer chains,resulting in fast and efficient self-healing.Scratches on the film completely disappeared within12 min,and the repair efficiency of strength was up to 98.4%within 3 h under ambient condition.Selfhealing behavior was also evaluated in artificial seawater and the healing efficiency(HE)was 95.1%.Furthermore,TA uniformly dispersed in the polymer matrix provides good antibacterial and anti-diatom properties,as well as strong adhesion to the substrate(~2.2 MPa).Laboratory bioassays against marine bacteria adhesion(~96%,~95%and~93%reduction for P.sp.,E.coli,and S.aureus,respectively)and diatom attachment(~84%reduction)demonstrated an outstanding antifouling property of the PDMSP(Ua-TUa)-TA.This work provides a promising pathway towards the development of high-performance silicone-based coatings for marine anti-biofouling. 展开更多
关键词 Poly(dimethylsiloxane) Poly(urea-thiourea) SELF-HEALING Hydrogen bonding Marine antifouling Tannic acid
原文传递
Antifouling nanocomposite polymer coatings for marine applications:A review on experiments,mechanisms,and theoretical studies 被引量:2
12
作者 Sepideh Pourhashem Abdolvahab Seif +8 位作者 Farhad Saba Elham Garmroudi Nezhad Xiaohong Ji Ziyang Zhou Xiaofan Zhai Majid Mirzaee jizhou duan Alimorad Rashidi Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第23期73-113,共41页
Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating... Marine fouling is a worldwide challenge with huge damages on industrial structures,side effects on economics of industries,and environmental and safety-related hazards.Different approaches have been used for combating fouling in the marine environment.Meanwhile,nanocomposite polymer coatings are a novel generation of antifouling coatings with merits of toxin-free chemical composition and ease of large-scale application.Nanomaterials such as nano-metals,nano-metal oxides,metal-organic frameworks,carbon-based nanostructures,MXene,and nanoclays have antibacterial and antifouling properties in the polymer coatings.Besides,these nanomaterials can improve the corrosion resistance,mechanical strength,weathering stability,and thermal resistance of the polymer coatings.Therefore,in this review paper,the antifouling nanocomposite coatings are introduced and antifouling mechanisms are discussed.This review explicitly indicates that the antifouling efficiency of the nanocomposite coatings depends on the properties of the polymer matrix,the inherent properties of the nanomaterials,the weight percent and the dispersion method of the nanomaterials within the coating matrix,and the chemicals used for modifying the surface of the nanomaterials;meanwhile,the hybrids of different nanomaterials and appropriate chemical agents could be used to improve the antifouling behavior of the prepared nanocomposites.Moreover,the theoretical studies are introduced to pave the way of researchers working on theantifouling coatings,and the importance of the theoretical studies and computational modeling along with the experimental research is notified to develop antifouling coatings with high efficiency. 展开更多
关键词 Antifouling nanocomposite coatings Nano-metal oxides Carbon-based nanomaterials MXene and nanoclays Theoretical studies
原文传递
Biofilm inhibition mechanism of BiVO inserted zinc matrix in marine isolated bacteria
13
作者 Xiaofan Zhai Peng JU +5 位作者 Fang Guan jizhou duan Nan Wang Yimeng Zhang Ke Li Baorong Hou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第16期86-95,共10页
Biofilm plays an important role on microbial corrosion and biofouling in marine environments.Inhibiting biofilm formation on construction surfaces is of great importance.Photocatalytic material with visiblelight respo... Biofilm plays an important role on microbial corrosion and biofouling in marine environments.Inhibiting biofilm formation on construction surfaces is of great importance.Photocatalytic material with visiblelight response,especially BiVO_(4),is regarded as a promising material for biofilm inhibition due to its green biocidal effect and high antibacterial efficiency.Approaches which can immobilize the photocatalytic particles onto metal surfaces with high mechanical strength are requisite.In this study,zinc matrixes were served as carriers for BiVO_(4)particles.The BiVO_(4)-inserted zinc matrixes were successfully obtained by ultrasound assisted electrodeposition.The insertion content of BiVO_(4)showed positive correlation with ultrasound power.Highly enhanced biofilm inhibition properties were obtained by BiVO_(4)inserted zinc·matrixes with an over 95%decreased bacterial coverage.It was proved that O2-(chief)andOH(subordinate)radicals were responsible for the high biocidal performance.Possible antibacterial mechanism was proposed,indicating that the photoinduced holes would both attack zinc crystals to generate active electrons to form O2-radicals,and react with H2 O to generate·OH,finally.Furthermore,corrosion resistance of the matrixes was proved to be stable due to the insertion of BiVO_(4).This study provides a potential application for photocatalyst in marine antifouling and anti-biocorrosion aspects. 展开更多
关键词 Biofilm inhibition BiVO_(4) Zinc matrix BiVO_(4)-Zn composite coating Marine antifouling Corrosion resistance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部