Perinatal hypoxic-ischemic encephalopathy is a leading cause of neonatal death and disability.Therapeutic hypothermia significantly reduces death and major disability associated with hypoxic-ischemic encephalopathy;ho...Perinatal hypoxic-ischemic encephalopathy is a leading cause of neonatal death and disability.Therapeutic hypothermia significantly reduces death and major disability associated with hypoxic-ischemic encephalopathy;however,many infants still experience lifelong disabilities to movement,sensation and cognition.Clinical guidelines,based on strong clinical and preclinical evidence,recommend therapeutic hypothermia should be started within 6 hours of birth and continued for a period of 72 hours,with a target brain temperature of 33.5 ±0.5℃ for infants with moderate to severe hypoxic-ischemic encephalopathy.The clinical guidelines also recommend that infants be re warmed at a rate of 0.5℃ per hour,but this is not based on strong evidence.There are no randomized controlled trials investigating the optimal rate of rewarming after therapeutic hypothermia for infants with hypoxic-ischemic encephalopathy.Preclinical studies of rewarming are conflicting and results were confounded by treatment with sub-optimal durations of hypothermia.In this review,we evaluate the evidence for the optimal start time,duration and depth of hypothermia,and whether the rate of rewarming after treatment affects brain injury and neurological outcomes.展开更多
There is increasing evidence that infants with mild neonatal encephalopathy(NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants...There is increasing evidence that infants with mild neonatal encephalopathy(NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants need to be diagnosed within 6 hours of birth, corresponding with the window of opportunity for treatment of moderate to severe NE, compared to the retrospective grading over 2 to 3 days, typically with imaging and formal electroencephalographic assessment in the pre-hypothermia era. This shift in diagnosis may have increased the apparent prevalence of brain damage and poor neurological outcomes seen in infants with mild NE in the era of hypothermia. Abnormal short term outcomes observed in infants with mild NE include seizures, abnormal neurologic examination at discharge, abnormal brain magnetic resonance imaging and difficulty feeding. At 2 to 3 years of age, mild NE has been associated with an increased risk of autism, language and cognitive deficits. There are no approved treatment strategies for these infants as they were not included in the initial randomized controlled trials for therapeutic hypothermia. However, there is already therapeutic creep, with many centers treating infants with mild NE despite the limited evidence for its safety and efficacy. The optimal duration of treatment and therapeutic window of opportunity for effective treatment need to be specifically established for mild NE as the evolution of injury is likely to be slower, based on preclinical data. Randomized controlled trials of therapeutic hypothermia for infants with mild NE are urgently required to establish the safety and efficacy of treatment. This review will examine the evidence for adverse outcomes after mild NE and dissect some of the challenges in developing therapeutic strategies for mild NE, before analyzing the evidence for therapeutic hypothermia and other strategies for treatment of these infants.展开更多
Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypo- thermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new...Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypo- thermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new and complementary therapeutic targets are needed to further improve outcomes. There is increasing evidence that glia play a key role in neural damage after hypoxia-ischemia and infection/inflammation. In this review, we discuss the role of astrocytic gap junction (connexin) hemichannels in the spread of neural injury after hypoxia-ischemia and/or infection/inflammation. Potential mechanisms of hemichannel medi- ated injury likely involve impaired intraceUular calcium handling, loss of blood-brain barrier integrity and release of adenosine triphosphate (ATP) resulting in over-activation of purinergic receptors. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious cycle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing new neuroprotective strategies for preterm infants will benefit from a detailed understanding of glial and connexin hemichannel responses.展开更多
Premature birth,defined as birth before 37 weeks completed gestation,represents 11.1%of all live births worldwide and the rate has increased in almost all countries over the past few decades(Dhillon et al.,2018).Altho...Premature birth,defined as birth before 37 weeks completed gestation,represents 11.1%of all live births worldwide and the rate has increased in almost all countries over the past few decades(Dhillon et al.,2018).Although mortality after preterm birth has fallen steadily over time,preterm infants continue to have very high rates of neurodevelopmental disability,including severe motor disorders such as cerebral palsy(Dhillon et al.,2018;Yates et al.,2021).展开更多
Hypoxic-ischemic encephalopathy(HIE)has an incidence of 1-3 in 1000 term births in high-income countries(Zhou et al.,2020).The standard treatment for these infants is therapeutic hypothermia.Although therapeutic hypot...Hypoxic-ischemic encephalopathy(HIE)has an incidence of 1-3 in 1000 term births in high-income countries(Zhou et al.,2020).The standard treatment for these infants is therapeutic hypothermia.Although therapeutic hypothermia significantly reduces the risk of death and disability for infants with HIE,it is still only partially protective as up to 45%of infants still develop disability despite treatment(Zhou et al.,2020).The current therapeutic hypothermia protocol is optimal for widespread use in infants with moderate to severe HIE.However,it is possible that a more tailored approach for individual babies,including stratification of the cooling regimen for the severity of HIE and the identification of reliable biomarkers to guide treatment,may improve efficacy in the future.展开更多
基金supported by The Health Research Council of New Zealand(grant No.16/003,17/601)the Marsden Fund(grant No.17-UOA232)a Sir Charles Hercus Fellowship from the Health Research Council of New Zealand(grant No.16/003)
文摘Perinatal hypoxic-ischemic encephalopathy is a leading cause of neonatal death and disability.Therapeutic hypothermia significantly reduces death and major disability associated with hypoxic-ischemic encephalopathy;however,many infants still experience lifelong disabilities to movement,sensation and cognition.Clinical guidelines,based on strong clinical and preclinical evidence,recommend therapeutic hypothermia should be started within 6 hours of birth and continued for a period of 72 hours,with a target brain temperature of 33.5 ±0.5℃ for infants with moderate to severe hypoxic-ischemic encephalopathy.The clinical guidelines also recommend that infants be re warmed at a rate of 0.5℃ per hour,but this is not based on strong evidence.There are no randomized controlled trials investigating the optimal rate of rewarming after therapeutic hypothermia for infants with hypoxic-ischemic encephalopathy.Preclinical studies of rewarming are conflicting and results were confounded by treatment with sub-optimal durations of hypothermia.In this review,we evaluate the evidence for the optimal start time,duration and depth of hypothermia,and whether the rate of rewarming after treatment affects brain injury and neurological outcomes.
基金supported by The Health Research Council of New Zealand(18/225,17/601,and 16/003)。
文摘There is increasing evidence that infants with mild neonatal encephalopathy(NE) have significant risks of mortality, brain injury and adverse neurodevelopmental outcomes. In the era of therapeutic hypothermia, infants need to be diagnosed within 6 hours of birth, corresponding with the window of opportunity for treatment of moderate to severe NE, compared to the retrospective grading over 2 to 3 days, typically with imaging and formal electroencephalographic assessment in the pre-hypothermia era. This shift in diagnosis may have increased the apparent prevalence of brain damage and poor neurological outcomes seen in infants with mild NE in the era of hypothermia. Abnormal short term outcomes observed in infants with mild NE include seizures, abnormal neurologic examination at discharge, abnormal brain magnetic resonance imaging and difficulty feeding. At 2 to 3 years of age, mild NE has been associated with an increased risk of autism, language and cognitive deficits. There are no approved treatment strategies for these infants as they were not included in the initial randomized controlled trials for therapeutic hypothermia. However, there is already therapeutic creep, with many centers treating infants with mild NE despite the limited evidence for its safety and efficacy. The optimal duration of treatment and therapeutic window of opportunity for effective treatment need to be specifically established for mild NE as the evolution of injury is likely to be slower, based on preclinical data. Randomized controlled trials of therapeutic hypothermia for infants with mild NE are urgently required to establish the safety and efficacy of treatment. This review will examine the evidence for adverse outcomes after mild NE and dissect some of the challenges in developing therapeutic strategies for mild NE, before analyzing the evidence for therapeutic hypothermia and other strategies for treatment of these infants.
基金supported by the Health Research Council of New Zealand(grant 17/601)the Auckland Medical Research Foundation+1 种基金National Health and Medical Research Council CJ Martin Early Career Fellowship(grant No.1090890 to RG)the Victorian Government Operational Infrastructure Support Program
文摘Perinatal encephalopathy remains a major cause of disability, such as cerebral palsy. Therapeutic hypo- thermia is now well established to partially reduce risk of disability in late preterm/term infants. However, new and complementary therapeutic targets are needed to further improve outcomes. There is increasing evidence that glia play a key role in neural damage after hypoxia-ischemia and infection/inflammation. In this review, we discuss the role of astrocytic gap junction (connexin) hemichannels in the spread of neural injury after hypoxia-ischemia and/or infection/inflammation. Potential mechanisms of hemichannel medi- ated injury likely involve impaired intraceUular calcium handling, loss of blood-brain barrier integrity and release of adenosine triphosphate (ATP) resulting in over-activation of purinergic receptors. We propose the hypothesis that inflammation-induced opening of connexin hemichannels is a key regulating event that initiates a vicious cycle of excessive ATP release, which in turn propagates activation of purinergic receptors on microglia and astrocytes. This suggests that developing new neuroprotective strategies for preterm infants will benefit from a detailed understanding of glial and connexin hemichannel responses.
基金the Health Research Council of New Zealand(17/601,12/613)(to LB).
文摘Premature birth,defined as birth before 37 weeks completed gestation,represents 11.1%of all live births worldwide and the rate has increased in almost all countries over the past few decades(Dhillon et al.,2018).Although mortality after preterm birth has fallen steadily over time,preterm infants continue to have very high rates of neurodevelopmental disability,including severe motor disorders such as cerebral palsy(Dhillon et al.,2018;Yates et al.,2021).
基金supported by the Health Research Council of New Zealand (No.1 7/601 to JD)the Marsden Fund (No.17-UOA232 to JD)
文摘Hypoxic-ischemic encephalopathy(HIE)has an incidence of 1-3 in 1000 term births in high-income countries(Zhou et al.,2020).The standard treatment for these infants is therapeutic hypothermia.Although therapeutic hypothermia significantly reduces the risk of death and disability for infants with HIE,it is still only partially protective as up to 45%of infants still develop disability despite treatment(Zhou et al.,2020).The current therapeutic hypothermia protocol is optimal for widespread use in infants with moderate to severe HIE.However,it is possible that a more tailored approach for individual babies,including stratification of the cooling regimen for the severity of HIE and the identification of reliable biomarkers to guide treatment,may improve efficacy in the future.