In this paper,we investigate geothermal exploration and production in 189 hydrothermal projects and 42 hot dry rock projects around the world.The hydrothermal fields for a working hydrothermal system to generate elect...In this paper,we investigate geothermal exploration and production in 189 hydrothermal projects and 42 hot dry rock projects around the world.The hydrothermal fields for a working hydrothermal system to generate electricity should have the elements of heat source,water-saturated porous or fractured reservoir,caprock,heat transfer pathway,and good heat preservation condition and geothermal power energy intensity of 10-20 MW per km^(2)within at least 5 km^(2)area in tectonically active region.The hot water or steam flow rate in this hydrothermal system is normally larger than 40 L/s with temperature of 150℃or above.The power generated from enhanced geothermal system(EGS)in hot dry rock projects are generally less than 2 MW because the flow rate in most cases is much less than 40 L/s even with the hydraulic fractures using the modern stimulation technology learned from the oil and gas industry.The natural fracture in the subsurface is generally beneficial to the hydraulic fracturing and heat recovery in the hot dry rock.Moreover,the hydraulic fracture parameters,injection rate and well spacing,drilling strategy should be properly designed to avoid the short-circuit between injector and producer and low heat productivity.In the future,CO^(2)enhanced geothermal recovery associated with CO^(2)sequestration in the high temperature oil,gas,and geothermal fields maybe a good choice.On the other hand,both nearreal-time seismic monitoring to limit the pumping rate and the closed-loop of the Eavor-Loop style system without hydraulic fracture can contribute greatly to heat recovery of hot dry rocks and mitigate the risks of the hydraulic fracturing induced earthquake.Furthermore,the hybrid solar and geothermal system performs better than the stand-alone geothermal system.展开更多
Borehole thermal energy storage(BTES)systems have garnered significant attention owing to their efficacy in storing thermal energy for heating and cooling applications.Accurate modeling is paramount for ensuring the p...Borehole thermal energy storage(BTES)systems have garnered significant attention owing to their efficacy in storing thermal energy for heating and cooling applications.Accurate modeling is paramount for ensuring the precise design and operation of BTES systems.This study conducts a sensitivity analysis of BTES modeling by employing a comparative investigation of five distinct parameters on a wedge-shaped model,with implications extendable to a cylindrical configuration.The parameters examined included two design factors(well spacing and grout thermal conductivity),two operational variables(charging and discharging rates),and one geological attribute(soil thermal conductivity).Finite element simulations were carried out for the sensitivity analysis to evaluate the round-trip efficiency,both on a per-cycle basis and cumulatively over three years of operation,serving as performance metrics.The results showed varying degrees of sensitivity across different models to changes in these parameters.In particular,the round-trip efficiency exhibited a greater sensitivity to changes in spacing and volumetric flow rate.Furthermore,this study underscores the importance of considering the impact of the soil and grout-material thermal conductivities on the BTES-system performance over time.An optimized scenario is modelled and compared with the base case,over a comparative assessment based on a 10-year simulation.The analysis revealed that,at the end of the 10-year period,the optimized BTES model achieved a cycle efficiency of 83.4%.This sensitivity analysis provides valuable insights into the merits and constraints of diverse BTES modeling methodologies,aiding in the selection of appropriate modeling tools for BTES system design and operation.展开更多
基金This research is funded by the Deep-time Digital Earth(DDE)Big Science Program(DDE Program).
文摘In this paper,we investigate geothermal exploration and production in 189 hydrothermal projects and 42 hot dry rock projects around the world.The hydrothermal fields for a working hydrothermal system to generate electricity should have the elements of heat source,water-saturated porous or fractured reservoir,caprock,heat transfer pathway,and good heat preservation condition and geothermal power energy intensity of 10-20 MW per km^(2)within at least 5 km^(2)area in tectonically active region.The hot water or steam flow rate in this hydrothermal system is normally larger than 40 L/s with temperature of 150℃or above.The power generated from enhanced geothermal system(EGS)in hot dry rock projects are generally less than 2 MW because the flow rate in most cases is much less than 40 L/s even with the hydraulic fractures using the modern stimulation technology learned from the oil and gas industry.The natural fracture in the subsurface is generally beneficial to the hydraulic fracturing and heat recovery in the hot dry rock.Moreover,the hydraulic fracture parameters,injection rate and well spacing,drilling strategy should be properly designed to avoid the short-circuit between injector and producer and low heat productivity.In the future,CO^(2)enhanced geothermal recovery associated with CO^(2)sequestration in the high temperature oil,gas,and geothermal fields maybe a good choice.On the other hand,both nearreal-time seismic monitoring to limit the pumping rate and the closed-loop of the Eavor-Loop style system without hydraulic fracture can contribute greatly to heat recovery of hot dry rocks and mitigate the risks of the hydraulic fracturing induced earthquake.Furthermore,the hybrid solar and geothermal system performs better than the stand-alone geothermal system.
文摘Borehole thermal energy storage(BTES)systems have garnered significant attention owing to their efficacy in storing thermal energy for heating and cooling applications.Accurate modeling is paramount for ensuring the precise design and operation of BTES systems.This study conducts a sensitivity analysis of BTES modeling by employing a comparative investigation of five distinct parameters on a wedge-shaped model,with implications extendable to a cylindrical configuration.The parameters examined included two design factors(well spacing and grout thermal conductivity),two operational variables(charging and discharging rates),and one geological attribute(soil thermal conductivity).Finite element simulations were carried out for the sensitivity analysis to evaluate the round-trip efficiency,both on a per-cycle basis and cumulatively over three years of operation,serving as performance metrics.The results showed varying degrees of sensitivity across different models to changes in these parameters.In particular,the round-trip efficiency exhibited a greater sensitivity to changes in spacing and volumetric flow rate.Furthermore,this study underscores the importance of considering the impact of the soil and grout-material thermal conductivities on the BTES-system performance over time.An optimized scenario is modelled and compared with the base case,over a comparative assessment based on a 10-year simulation.The analysis revealed that,at the end of the 10-year period,the optimized BTES model achieved a cycle efficiency of 83.4%.This sensitivity analysis provides valuable insights into the merits and constraints of diverse BTES modeling methodologies,aiding in the selection of appropriate modeling tools for BTES system design and operation.