The speckle-type POZ protein (SPOP) is a tumor suppressor in prostate cancer (PCa). SPOP somatic mutations have been reported in up to 15% of PCa of those of European descent. However, the genetic roles of SPOP in...The speckle-type POZ protein (SPOP) is a tumor suppressor in prostate cancer (PCa). SPOP somatic mutations have been reported in up to 15% of PCa of those of European descent. However, the genetic roles of SPOP in African American (AA)-PCa are currently unknown. We sequenced the SPOP gene to identify somatic mutations in 49 AA prostate tumors and identified three missense mutations (p.Y87C, p.F102S, and p.G111E) in five AA prostate tumors (10%) and one synonymous variant (p.11061) in one tumor. Intriguingly, all of mutations and variants clustered in exon six, and all of the mutations altered conserved amino acids. Moreover, two mutations (p.F102S and p.G111E) have only been identified in AA-PCa to date. Quantitative real-time polymerase chain reaction analysis showed a lower level of SPOP expression in tumors carrying SPOP mutations than their matched normal prostate tissues. In addition, SPOP mutations and novel variants were detected in 5 of 27 aggressive PCa and one of 22 less aggressive PCa (P 〈 0.05). Further studies with increased sample size are needed to validate the clinicopathological significance of these SPOP mutations in AA-PCa.展开更多
Background: Significant resource constraints and critical care training gaps are responsible for the limited development of intensive care units (ICUs) in resource limited settings. We describe the implementation of a...Background: Significant resource constraints and critical care training gaps are responsible for the limited development of intensive care units (ICUs) in resource limited settings. We describe the implementation of an ICU in Haiti and report the successes and difficulties encountered throughout the process. We present a consecutive case series investigating an anesthesiologist, emergency, and critical care physician implemented endotracheal intubation and mechanical ventilation protocol in an austere environment with the assistance of telemedicine. Methods: A consecutive case series of fifteen patients admitted to an ICU at St. Luc Hospital located in Portau-Prince, Haiti, between the months of February 2012 to April 2014 is reported. Causes of respiratory failure and the clinical course are presented. Patients were followed to either death or discharge. Results: Fifteen patients (eight women and seven men) were included in the study with an average age of 37.7 years. The mean duration of ventilation was three days. Of the fifteen patients intubated, five patients (33.3%) survived and were discharged from the ICU. Of the five surviving patients, two were intubated for status epilepticus, one for status asthmaticus and one for hyperosmolar coma associated with intracerebral hemorrhage. Of the patients dying on the ventilator, four patients died from pneumonia, two from renal failure, and one from tetanus. The remaining three died from strokes and cardiac arrests. Conclusions: Mortality of mechanically ventilated patients in a resource-limited country is significant. Focused training in core critical care skills aimed at increasing the endotracheal intubation and ventilatory management capacity of local medical staff should be a priority in order to continue to develop ICUs in these austere environments. Collaborative educational and training efforts directed by anesthesiologists, emergency, and critical care physicians, and aided by telemedicine can facilitate realizing this goal.展开更多
Various investigations have been conducted to analyze the water-coverage area of the Aral Sea and the Aral Sea Basin(ASB). However, the investigations incorporated considerable uncertainty and the used water indices h...Various investigations have been conducted to analyze the water-coverage area of the Aral Sea and the Aral Sea Basin(ASB). However, the investigations incorporated considerable uncertainty and the used water indices had misclassification problem, which made different research groups present different results. Thus we first ascertain the boundaries of the ASB, the Syr and Amu river basins as well as their upper, middle and lower reaches. Then a four-band index for both liquid and solid water(ILSW) is proposed to address the misclassification problems of the classic water indices. ILSW is calculated by using the reflectance values of the green, red, near infrared, and thermal infrared bands, which combines the normalized difference water index(NDWI) and land surface temperature(LST) together. Validation results show that the ILSW water index has the highest accuracy by far in the Aral Sea Basin. Our results indicate that annual average decline of the water-coverage area was 963 km^(2) in the southern Aral Sea, whereas the northern Aral Sea has experienced little change. In the meanwhile, permanent ice and snow in upper reach of ASB has retreated considerably. Annual retreating rates of the permanent ice and snow were respectively 6233and 3841 km^(2) in upper reaches of Amu river basin(UARB) and Syr river basin(USRB). One of major reasons is that climate has become warmer in ASB. The climate change has caused serious water deficit problem. The water deficit had an increasing trend since the 1990s and its increasing rates was 3.778 billion m^(3) yearly on average. The total water deficit was 76.967 billion m^(3) on average in the whole area of ASB in the 2010s. However, up reaches of Syr river basin(USRB), a component area of ASB, had water surplus of 25.461 billion m^(3). These conclusions are useful for setting out a sustainable development strategy in ASB.展开更多
The computer advances of the past century can be traced to the increase in their numbers on chips that has accompanied the miniaturization of transistors.However,computers are nearing the fundamental limits of such mi...The computer advances of the past century can be traced to the increase in their numbers on chips that has accompanied the miniaturization of transistors.However,computers are nearing the fundamental limits of such miniaturization[1].Many practical problems require huge amounts of computational resources that exceed the capabilities of today's computers.A 54-qubit quantum computer on the other hand can solve in minutes a problem that would take a classical machine 10,000 years[2].展开更多
The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO_2 is the most important one responsible for radiative forcing of the climate. In order to reduce the g...The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO_2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty of atmospheric CO_2 concentrations, several CO_2-related satellites have been successfully launched and many future greenhouse gas monitoring missions are planned. In this paper, we review the development of CO_2 retrieval algorithms, spatial interpolation methods and ground observations. The main findings include: 1) current CO_2 retrieval algorithms only partially account for atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO_2 concentrations on regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO_2 concentrations. These findings, taken as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the fundamental theorem of Earth's surface modelling, which is able to efficiently fuse space- and ground-based measurements on the one hand and work with atmospheric transport models on the other hand.展开更多
The advent of information and communication technology and the Internet of Things have led our society toward a digital era.The proliferation of personal computers,smartphones,intelligent autonomous sensors,and pervas...The advent of information and communication technology and the Internet of Things have led our society toward a digital era.The proliferation of personal computers,smartphones,intelligent autonomous sensors,and pervasive network interactions with individuals have gradually shifted human activities from offline to online and from in person to virtual.This transformation has brought a series of challenges in a variety of fields,such as the dilemma of placelessness,some aspects of timelessness(no time relevance),and the changing relevance of distance in the field of geographic information science(GIScience).In the last two decades,“cyber thinking”in GIScience has received significant attention from different perspectives.For instance,human activities in“cyberspace”need to be reconsidered when coupled with the geographic space to observe the first law of geography.展开更多
文摘The speckle-type POZ protein (SPOP) is a tumor suppressor in prostate cancer (PCa). SPOP somatic mutations have been reported in up to 15% of PCa of those of European descent. However, the genetic roles of SPOP in African American (AA)-PCa are currently unknown. We sequenced the SPOP gene to identify somatic mutations in 49 AA prostate tumors and identified three missense mutations (p.Y87C, p.F102S, and p.G111E) in five AA prostate tumors (10%) and one synonymous variant (p.11061) in one tumor. Intriguingly, all of mutations and variants clustered in exon six, and all of the mutations altered conserved amino acids. Moreover, two mutations (p.F102S and p.G111E) have only been identified in AA-PCa to date. Quantitative real-time polymerase chain reaction analysis showed a lower level of SPOP expression in tumors carrying SPOP mutations than their matched normal prostate tissues. In addition, SPOP mutations and novel variants were detected in 5 of 27 aggressive PCa and one of 22 less aggressive PCa (P 〈 0.05). Further studies with increased sample size are needed to validate the clinicopathological significance of these SPOP mutations in AA-PCa.
文摘Background: Significant resource constraints and critical care training gaps are responsible for the limited development of intensive care units (ICUs) in resource limited settings. We describe the implementation of an ICU in Haiti and report the successes and difficulties encountered throughout the process. We present a consecutive case series investigating an anesthesiologist, emergency, and critical care physician implemented endotracheal intubation and mechanical ventilation protocol in an austere environment with the assistance of telemedicine. Methods: A consecutive case series of fifteen patients admitted to an ICU at St. Luc Hospital located in Portau-Prince, Haiti, between the months of February 2012 to April 2014 is reported. Causes of respiratory failure and the clinical course are presented. Patients were followed to either death or discharge. Results: Fifteen patients (eight women and seven men) were included in the study with an average age of 37.7 years. The mean duration of ventilation was three days. Of the fifteen patients intubated, five patients (33.3%) survived and were discharged from the ICU. Of the five surviving patients, two were intubated for status epilepticus, one for status asthmaticus and one for hyperosmolar coma associated with intracerebral hemorrhage. Of the patients dying on the ventilator, four patients died from pneumonia, two from renal failure, and one from tetanus. The remaining three died from strokes and cardiac arrests. Conclusions: Mortality of mechanically ventilated patients in a resource-limited country is significant. Focused training in core critical care skills aimed at increasing the endotracheal intubation and ventilatory management capacity of local medical staff should be a priority in order to continue to develop ICUs in these austere environments. Collaborative educational and training efforts directed by anesthesiologists, emergency, and critical care physicians, and aided by telemedicine can facilitate realizing this goal.
基金supported by the Key Program of National Natural Science Foundation of China(Grant No.42230708)the Strategic Priority Research Program of the Chinese Academy of Sciences,Pan-Third Pole Environment Study for a Green Silk Road(Grant No.XDA20060303)the K.C.Wong Education Foundation(Grant No.GJTD-2020-14)。
文摘Various investigations have been conducted to analyze the water-coverage area of the Aral Sea and the Aral Sea Basin(ASB). However, the investigations incorporated considerable uncertainty and the used water indices had misclassification problem, which made different research groups present different results. Thus we first ascertain the boundaries of the ASB, the Syr and Amu river basins as well as their upper, middle and lower reaches. Then a four-band index for both liquid and solid water(ILSW) is proposed to address the misclassification problems of the classic water indices. ILSW is calculated by using the reflectance values of the green, red, near infrared, and thermal infrared bands, which combines the normalized difference water index(NDWI) and land surface temperature(LST) together. Validation results show that the ILSW water index has the highest accuracy by far in the Aral Sea Basin. Our results indicate that annual average decline of the water-coverage area was 963 km^(2) in the southern Aral Sea, whereas the northern Aral Sea has experienced little change. In the meanwhile, permanent ice and snow in upper reach of ASB has retreated considerably. Annual retreating rates of the permanent ice and snow were respectively 6233and 3841 km^(2) in upper reaches of Amu river basin(UARB) and Syr river basin(USRB). One of major reasons is that climate has become warmer in ASB. The climate change has caused serious water deficit problem. The water deficit had an increasing trend since the 1990s and its increasing rates was 3.778 billion m^(3) yearly on average. The total water deficit was 76.967 billion m^(3) on average in the whole area of ASB in the 2010s. However, up reaches of Syr river basin(USRB), a component area of ASB, had water surplus of 25.461 billion m^(3). These conclusions are useful for setting out a sustainable development strategy in ASB.
基金supported by the National Natural Science Foundation of China(41930647 and 62001260)the Strategic Priority Research Program(A)of the Chinese Academy of Sciences(XDA20030203)。
文摘The computer advances of the past century can be traced to the increase in their numbers on chips that has accompanied the miniaturization of transistors.However,computers are nearing the fundamental limits of such miniaturization[1].Many practical problems require huge amounts of computational resources that exceed the capabilities of today's computers.A 54-qubit quantum computer on the other hand can solve in minutes a problem that would take a classical machine 10,000 years[2].
基金supported by the National Natural Science Foundation of China (Grant Nos. 91325204, 41421001)the National High-tech R&D Program (Grant No. 2013AA122003)the National Key Technologies R&D Program (Grant No. 2013BACO3B05)
文摘The climate warming is mainly due to the increase in concentrations of anthropogenic greenhouse gases, of which CO_2 is the most important one responsible for radiative forcing of the climate. In order to reduce the great estimation uncertainty of atmospheric CO_2 concentrations, several CO_2-related satellites have been successfully launched and many future greenhouse gas monitoring missions are planned. In this paper, we review the development of CO_2 retrieval algorithms, spatial interpolation methods and ground observations. The main findings include: 1) current CO_2 retrieval algorithms only partially account for atmospheric scattering effects; 2) the accurate estimation of the vertical profile of greenhouse gas concentrations is a long-term challenge for remote sensing techniques; 3) ground-based observations are too sparse to accurately infer CO_2 concentrations on regional scales; and 4) accuracy is the primary challenge of satellite estimation of CO_2 concentrations. These findings, taken as a whole, point to the need to develop a high accuracy method for simulation of carbon sources and sinks on the basis of the fundamental theorem of Earth's surface modelling, which is able to efficiently fuse space- and ground-based measurements on the one hand and work with atmospheric transport models on the other hand.
文摘The advent of information and communication technology and the Internet of Things have led our society toward a digital era.The proliferation of personal computers,smartphones,intelligent autonomous sensors,and pervasive network interactions with individuals have gradually shifted human activities from offline to online and from in person to virtual.This transformation has brought a series of challenges in a variety of fields,such as the dilemma of placelessness,some aspects of timelessness(no time relevance),and the changing relevance of distance in the field of geographic information science(GIScience).In the last two decades,“cyber thinking”in GIScience has received significant attention from different perspectives.For instance,human activities in“cyberspace”need to be reconsidered when coupled with the geographic space to observe the first law of geography.