期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Real-Time Tunable Gas Sensing Platform Based on SnO_(2) Nanoparticles Activated by Blue Micro-Light-Emitting Diodes
1
作者 Gi Baek Nam Jung-El Ryu +25 位作者 Tae Hoon Eom Seung Ju Kim Jun Min Suh Seungmin Lee Sungkyun Choi Cheon Woo Moon Seon Ju Park Soo Min Lee Byungsoo Kim Sung Hyuk Park Jin Wook Yang Sangjin Min Sohyeon Park Sung Hwan Cho Hyuk Jin Kim Sang Eon Jun Tae Hyung Lee Yeong Jae Kim Jae Young Kim Young Joon Hong jong-in shim Hyung-Gi Byun Yongjo Park Inkyu Park Sang-Wan Ryu Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第12期103-119,共17页
Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite thes... Micro-light-emitting diodes(μLEDs)have gained significant interest as an activation source for gas sensors owing to their advantages,including room temperature operation and low power consumption.However,despite these benefits,challenges still exist such as a limited range of detectable gases and slow response.In this study,we present a blueμLED-integrated light-activated gas sensor array based on SnO_(2)nanoparticles(NPs)that exhibit excellent sensitivity,tunable selectivity,and rapid detection with micro-watt level power consumption.The optimal power forμLED is observed at the highest gas response,supported by finite-difference time-domain simulation.Additionally,we first report the visible light-activated selective detection of reducing gases using noble metal-decorated SnO_(2)NPs.The noble metals induce catalytic interaction with reducing gases,clearly distinguishing NH3,H2,and C2H5OH.Real-time gas monitoring based on a fully hardwareimplemented light-activated sensing array was demonstrated,opening up new avenues for advancements in light-activated electronic nose technologies. 展开更多
关键词 Micro-LED Gas sensor array Low power consumption Metal decoration Real-time detection
下载PDF
Investigation into charge carrier dynamics in organic light-emitting diodes
2
作者 Dong-Guang Zheng Hyeon-Dong Lee +6 位作者 Gyeong Won Lee Dong-Soo Shin Jeongwon Kim jong-in shim Zhiqun Lin Tae-Woo Lee Dong Ha Kim 《Nano Research Energy》 2024年第2期39-46,共8页
Organic light-emitting diodes(OLEDs)have demonstrated remarkable advancements in both device lifetime and luminous efficiency.However,insufficient operation lifetime due to device degradation remains a major hurdle,es... Organic light-emitting diodes(OLEDs)have demonstrated remarkable advancements in both device lifetime and luminous efficiency.However,insufficient operation lifetime due to device degradation remains a major hurdle,especially for brighter devices.Understanding the degradation mechanisms of OLEDs due to the degradation of functional materials and the formation of defects in device architectures continues to be a significant challenge.Herein,we evaluate the degradation characteristics by scrutinizing the electrical and optical properties,as well as analyzing the charge carrier dynamics in pristine and aged states of phosphorescent OLEDs(PhOLEDs).We show that degradation mechanisms in PhOLEDs can be elucidated in terms of the ideality factors of current and luminance in pristine and aged device states.The consistent shifts in distinct ideality factors across various states points out that the device degradation is attributed to the deterioration of the guest material,i.e.green-light-emitting phosphorescent material.Conversely,the incongruity in ideality factor changes between the two states indicates that the degradation results from the deterioration of non-light-emitting material.Subsequent characterization experiments provide further evidence that this degradation is primarily attributed to the deterioration of CBP-host material.The thorough understanding of degradation mechanisms established in this study can contribute to realizing the highly reliable PhOLEDs with a long lifetime. 展开更多
关键词 organic light-emitting diodes ideality factor carrier transport processes degradation mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部