Most probable number (MPN) and colony-forming unit (CFU) estimates of fecal indicator bacteria (FIB) concentration are common measures of water quality in aquatic environments. Thus, FIB intensively monitored in...Most probable number (MPN) and colony-forming unit (CFU) estimates of fecal indicator bacteria (FIB) concentration are common measures of water quality in aquatic environments. Thus, FIB intensively monitored in Yeongsan Watershed in an attempt to compare two different methods and to develop a statistical model to convert from CFU to MPN estimates or vice versa. As a result, the significant difference was found in the MPN and CFU estimates. The enumerated Escherichia coli concentrations in MPN are greater than those in CFU, except for the measurement in winter. Especially in fall, E. coli concentrations in MPN are one order of magnitude greater than that in CFU. Contrarily, enterococci bacteria in MPN are lower than those in CFU. However, in general, a strongly positive relationship are found between MPN and CFU estimates. Therefore, the statistical models were developed, and showed the reasonable converting FIB concentrations from CFU estimates to MPN estimates. We expect this study will provide preliminary information towards future research on whether different analysis methods may result in different water quality standard violation frequencies for the same water sample.展开更多
Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process mi...Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models-artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R^2), Nash-Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process.展开更多
基金supported by the Korean Ministry of Environment as "The Eco-technopia 21 Project" (No. 019-071-053)
文摘Most probable number (MPN) and colony-forming unit (CFU) estimates of fecal indicator bacteria (FIB) concentration are common measures of water quality in aquatic environments. Thus, FIB intensively monitored in Yeongsan Watershed in an attempt to compare two different methods and to develop a statistical model to convert from CFU to MPN estimates or vice versa. As a result, the significant difference was found in the MPN and CFU estimates. The enumerated Escherichia coli concentrations in MPN are greater than those in CFU, except for the measurement in winter. Especially in fall, E. coli concentrations in MPN are one order of magnitude greater than that in CFU. Contrarily, enterococci bacteria in MPN are lower than those in CFU. However, in general, a strongly positive relationship are found between MPN and CFU estimates. Therefore, the statistical models were developed, and showed the reasonable converting FIB concentrations from CFU estimates to MPN estimates. We expect this study will provide preliminary information towards future research on whether different analysis methods may result in different water quality standard violation frequencies for the same water sample.
基金supported by a grant (12-TI-C04) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government
文摘Of growing amount of food waste, the integrated food waste and waste water treatment was regarded as one of the efficient modeling method. However, the load of food waste to the conventional waste treatment process might lead to the high concentration of total nitrogen(T-N) impact on the effluent water quality. The objective of this study is to establish two machine learning models-artificial neural networks(ANNs) and support vector machines(SVMs), in order to predict 1-day interval T-N concentration of effluent from a wastewater treatment plant in Ulsan, Korea. Daily water quality data and meteorological data were used and the performance of both models was evaluated in terms of the coefficient of determination(R^2), Nash-Sutcliff efficiency(NSE), relative efficiency criteria(d rel). Additionally, Latin-Hypercube one-factor-at-a-time(LH-OAT) and a pattern search algorithm were applied to sensitivity analysis and model parameter optimization, respectively. Results showed that both models could be effectively applied to the 1-day interval prediction of T-N concentration of effluent. SVM model showed a higher prediction accuracy in the training stage and similar result in the validation stage.However, the sensitivity analysis demonstrated that the ANN model was a superior model for 1-day interval T-N concentration prediction in terms of the cause-and-effect relationship between T-N concentration and modeling input values to integrated food waste and waste water treatment. This study suggested the efficient and robust nonlinear time-series modeling method for an early prediction of the water quality of integrated food waste and waste water treatment process.