期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influence of Tillage and Deep Rooted Cool Season Cover Crops on Soil Properties, Pests, and Yield Responses in Cotton 被引量:2
1
作者 Michael W. Marshall Phillip Williams +4 位作者 Ali Mirzakhani Nafchi Joe Mario Maja jose payero John Mueller Ahmad Khalilian 《Open Journal of Soil Science》 2016年第10期149-158,共11页
Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induce... Soil compaction is a significant problem in the Southeastern USA. This compacted zone or hardpan limits root penetration below this layer and reduces potential yield and makes plants more susceptible to drought induced stresses. Soil compaction in this region is managed using costly annual deep tillage at or before planting and there is a great interest in reducing and/or eliminating annual tillage operations to lower production costs. Deep rooted cool season cover crops can penetrate this compacted soil zone and create channels, which cash crop roots, such as cotton, could follow to capture moisture and nutrients stored in the subsoil. The cool season cover crop roots would reduce the need for annual deep tillage prior to planting, increases soil organic matter, which provides greater water infiltration and available water holding capacity. Field studies were conducted for two years with three different soil series to determine the effects of tillage systems and cool season cover crops on the soil chemical and physical properties, yield responses, and pest pressure. Results showed that cool season cover crops significantly reduced soil compaction, increased cotton lint yield and soil moisture content, reduced nematode population densities, and increased soil available P, K, Mn, and organic matter content compared to the conventional no-cover crop. 展开更多
关键词 Cover Crop COTTON Soil Compaction Nematodes Soil Water Content TILLAGE
下载PDF
Development of a Portable Electro-Mechanical Educational Model for Variable Rate Center Pivot Irrigation Technology
2
作者 Young J. Han Ahmad Khalilian +1 位作者 jose payero Nicholas Rogers 《Journal of Water Resource and Protection》 2016年第4期449-458,共10页
Center pivot irrigation systems usually apply a relatively uniform amount of water to fields that are often inherently variable, which could lead to significant waste of water and energy. To address this issue, our te... Center pivot irrigation systems usually apply a relatively uniform amount of water to fields that are often inherently variable, which could lead to significant waste of water and energy. To address this issue, our team is now developing an Intelligent Center Pivot (ICP) by integrating sensor-based irrigation scheduling with variable rate irrigation technology. However, before this technology can be applied in commercial production, it is necessary to educate growers about its practicality and potential benefits. The objective of this study was to develop a portable tabletop intelligent center pivot model (ICPDemo) to demonstrate and promote adoption of the ICP technology. This paper describes an ICPDemo constructed in 2014, including the design specifications, electro-mechanical design, control strategy, and performance. The ICPDemo has performed according to design specifications and is successfully being used to demonstrate the benefits and effectiveness of ICP technology for irrigation scheduling. 展开更多
关键词 IRRIGATION Center Pivot Irrigation Electro-Mechanical Model SENSORS Control Variable Rate Irrigation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部