Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil...Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.展开更多
Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative fo...Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative for comprehending the dynamics of BP infection and discerning biomarkers indicative of the host cell response process.Methods:mRNA extraction from BP-infected mouse macrophages constituted the initial step of our study.Employing gene expression arrays,the extracted RNA underwent conversion into digital signals.The percentile shift method facilitated data processing,with the identification of genes manifesting significant differences accomplished through the application of the t-test.Subsequently,a comprehensive analysis involving Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway was conducted on the differentially expressed genes(DEGs).Leveraging the ESTIMATE algorithm,gene signatures were utilized to compute risk scores for gene expression data.Support vector machine analysis and gene enrichment scores were instrumental in establishing correlations between biomarkers and macrophages,followed by an evaluation of the predictive power of the identified biomarkers.Results:The functional and pathway associations of the DEGs predominantly centered around G protein-coupled receptors.A noteworthy positive correlation emerged between the blue module,consisting of 416 genes,and the StromaScore.FZD4,identified through support vector machine analysis among intersecting genes,indicated a robust interaction with macrophages,suggesting its potential as a robust biomarker.FZD4 exhibited commendable predictive efficacy,with BP infection inducing its expression in both macrophages and mouse lung tissue.Western blotting in macrophages confirmed a significant upregulation of FZD4 expression from 0.5 to 24 h post-infection.In mouse lung tissue,FZD4 manifested higher expression in the cytoplasm of pulmonary epithelial cells in BP-infected lungs than in the control group.Conclusion:Thesefindings underscore the upregulation of FZD4 expression by BP in both macrophages and lung tissue,pointing to its prospective role as a biomarker in the pathogenesis of BP infection.展开更多
Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack...Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.展开更多
A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the W...A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region.展开更多
Tertiary lymphoid structures(TLS)are ectopic lymphoid structures in cancers that are largely associated with favourable prognosis.However,the prognostic value of TLSs in oral squamous cell carcinoma(OSCC)is largely un...Tertiary lymphoid structures(TLS)are ectopic lymphoid structures in cancers that are largely associated with favourable prognosis.However,the prognostic value of TLSs in oral squamous cell carcinoma(OSCC)is largely unknown,and the association between tumour infiltrating lymphocytes(TILs)and TLSs has been rarely explored in OSCC.In this study,associated markers of TLS,including peripheral node address(PNAd)in high endothelial venules,CD20 in B cells and CD3 in T cells,were examined in 168 OSCC patients,and survival analysis was performed between TLS-positive and TLS-negative cohorts.We detected the presence of TILs by staining CD8+cytotoxic T cells and CD57+NK cells as well.TLSs appeared as highly organized structures in 45(26.8%)cases.TLSpositive patients had a better 5-year overall survival(OS)rate(88.9%vs.56.1%,P<0.001)and relapse-free survival(RFS)rate(88.9%vs.63.4%,P=0.002).Moreover,the presence of TLS was an independent prognostic factor for both the 5-year OS rate(hazard ratio[HR]=3.784;95%confidence interval[CI],1.498–9.562)and RFS rate(HR=3.296;95%CI,1.279–8.490)in multivariate analysis.Furthermore,a higher density of CD8+T cells and CD57+NK cells was found in TLS-positive sections than in TLS-negative counterparts(P<0.001),and their combination provided a higher predictive accuracy(AUC=0.730;95%CI,0.654–0.805).In conclusion,our results suggest that TLS is an independent positive prognostic factor for OSCC patients.These findings provide a theoretical basis for the future diagnostic and therapeutic value of TLSs in OSCC treatment.展开更多
Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is dis...Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.展开更多
The heterogeneity of exhausted T cells(Tex)is a critical determinant of immune checkpoint blockade therapy efficacy.However,few studies have explored exhausted T cell subpopulations in human cancers.In the present stu...The heterogeneity of exhausted T cells(Tex)is a critical determinant of immune checkpoint blockade therapy efficacy.However,few studies have explored exhausted T cell subpopulations in human cancers.In the present study,we examined samples from two cohorts of 175 patients with head and neck squamous cell cancer(HNSCC)by multiplex immunohistochemistry(mIHC)to investigate two subsets of Tex,CD8+PD1+TCF1+progenitor exhausted T cells(TCF1+Texprog)and CD8+PD1+TCF1−terminally exhausted T cells(TCF1−Texterm).Moreover,fresh tumor samples from 34 patients with HNSCC were examined by flow cytometry and immunohistochemistry to further investigate their properties and cytotoxic capabilities and their correlation with regulatory T cells(Tregs)in the tumor immune microenvironment(TIME).mIHC and flow cytometry analysis showed that TCF1−Texterm represented a greater proportion of CD8+PD1+Tex than TCF1+Texprog in most patients.TCF1+Texprog produced abundant TNFα,while TCF1−Texterm expressed higher levels of CD103,TIM-3,CTLA-4,and TIGIT.TCF1−Texterm exhibited a polyfunctional TNFα+GZMB+IFNγ+phenotype;and were associated with better overall survival and recurrence-free survival.The results also indicated that larger proportions of TCF1−Texterm were accompanied by an increase in the proportion of Tregs.Therefore,it was concluded that TCF1−Texterm was the major CD8+PD1+Tex subset in the HNSCC TIME and that these cells favor patient survival.A high proportion of TCF1−Texterm was associated with greater Treg abundance.展开更多
In recent years,with the development of processor architecture,heterogeneous processors including Center processing unit(CPU)and Graphics processing unit(GPU)have become the mainstream.However,due to the differences o...In recent years,with the development of processor architecture,heterogeneous processors including Center processing unit(CPU)and Graphics processing unit(GPU)have become the mainstream.However,due to the differences of heterogeneous core,the heterogeneous system is now facing many problems that need to be solved.In order to solve these problems,this paper try to focus on the utilization and efficiency of heterogeneous core and design some reasonable resource scheduling strategies.To improve the performance of the system,this paper proposes a combination strategy for a single task and a multi-task scheduling strategy for multiple tasks.The combination strategy consists of two sub-strategies,the first strategy improves the execution efficiency of tasks on the GPU by changing the thread organization structure.The second focuses on the working state of the efficient core and develops more reasonable workload balancing schemes to improve resource utilization of heterogeneous systems.The multi-task scheduling strategy obtains the execution efficiency of heterogeneous cores and global task information through the processing of task samples.Based on this information,an improved ant colony algorithm is used to quickly obtain a reasonable task allocation scheme,which fully utilizes the characteristics of heterogeneous cores.The experimental results show that the combination strategy reduces task execution time by 29.13%on average.In the case of processing multiple tasks,the multi-task scheduling strategy reduces the execution time by up to 23.38%based on the combined strategy.Both strategies can make better use of the resources of heterogeneous systems and significantly reduce the execution time of tasks on heterogeneous systems.展开更多
Convectively coupled equatorial Rossby waves(ERW)modulate tropical cyclone activities over tropical oceans.This study presents a survey of the statistical relationship between intraseasonal ERWs and tropical cyclone g...Convectively coupled equatorial Rossby waves(ERW)modulate tropical cyclone activities over tropical oceans.This study presents a survey of the statistical relationship between intraseasonal ERWs and tropical cyclone genesis(TCG)over major global TC basins using four-decade-long outgoing longwave radiation(OLR)and TC best-track datasets.Intraseasonal ERWs are identified from the OLR anomalies using an empirical orthogonal function(EOF)analysis method without imposing equatorial symmetry.We find that westward-propagating ERWs are most significant in four tropical ocean basins over the summer hemisphere and that ERWs exhibit similar northeast-southwest(southeast-northwest)tilted phase lines in the northern(southern)hemisphere,with an appreciable poleward advance of wave energy in most TC basins.The EOF-based ERW indices quantitatively show that ERWs significantly modulate TC genesis.The convectively active(suppressed)phases of ERWs coincide with increased(reduced)TCG occurrences.The TCG modulation by ERWs achieves the maximum where the ERWs propagate through the climatological TCG hotspots.As a result,the total number of TCG occurrences in the TC basins varies significantly according to the ERW phase.The ERW-TCG relationship is significant over the northwestern Pacific Ocean,northeastern Pacific Ocean,and the northern Indian Ocean during the northern summer seasons.In the southern summer season,the ERW-TCG relationship is significant over the southern Indian Ocean,Indonesian-Australia basin,and the southwestern Pacific Ocean.However,ERW activities are weak in the main TC development region of the Atlantic Ocean;and the impact on Atlantic TCG appears to be insignificant.展开更多
As a follow-up of a previously published article on the contribution of tropical waves,this study explores the evolution of the mid-tropospheric mesoscale cyclonic vortex(MV)during the formation of Typhoon Megi(2010)w...As a follow-up of a previously published article on the contribution of tropical waves,this study explores the evolution of the mid-tropospheric mesoscale cyclonic vortex(MV)during the formation of Typhoon Megi(2010)with a successful cloud-resolving simulation.It is found that the formation and intensification of the MV were related to the deep convection and subsequent stratiform precipitation,while the weakening of the MV was related to the shallow convection.Both the upward transport of vorticity related to the deep convection and the horizontal convergence associated with the stratiform precipitation contributed to the formation and intensification of the MV.Even though the latter was dominant,the former could not be ignored,especially in the early stage of the MV.The MV played dual roles in the formation of Megi.On the one hand,the formation and intensification of MV were primarily associated with the stratiform precipitation,which induced the low-level divergence inhibiting the spin-up of the near-surface cyclonic circulation.On the other hand,the coupled low-level cold core under the MV benefited the accumulation of the convective available potential energy(CAPE),which was favorable for the convective activity.A sensitivity experiment with the evaporative cooling turned off indicated that the development of the MV retarded the genesis process of Megi.展开更多
Head and neck squamous cell carcinoma is the sixth most common tumor worldwide,and half of head and neck squamous cell carcinoma patients are with oral squamous cell carcinoma(OSCC).300,000 new cases of OSCC were repo...Head and neck squamous cell carcinoma is the sixth most common tumor worldwide,and half of head and neck squamous cell carcinoma patients are with oral squamous cell carcinoma(OSCC).300,000 new cases of OSCC were reported annually.Even with multi-modality treatment,the prognosis of OSCC remains unsatisfactory.Thus,it is urgent to discover novel therapeutic targets for OSCC.Some microarray studies have revealed that Keratin 4(KRT4)is downregulated in OSCC,whereas its role in OSCC development remains unknown.The present study revealed that KRT4 suppressed OSCC progression by inducing cell apoptosis and inhibiting cell invasion.In addition,KRT4 over-expression inhibited autophagy by blocking the interaction of autophagy-related 4B cysteine peptidase(ATG4B)and microtubule-associated protein 1A/1B light chain 3(LC3)to regulate apoptosis and invasion of OSCC.In conclusion,KRT4 played an important role in OSCC development through regulating ATG4B-mediated autophagy and may be a novel therapeutic drug target of OSCC.展开更多
Since the three-dimensional Network on Chip(3D NoC)uses through-silicon via technology to connect the chips,each silicon layer is conducted through heterogeneous thermal,and 3D NoC system suffers from thermal problems...Since the three-dimensional Network on Chip(3D NoC)uses through-silicon via technology to connect the chips,each silicon layer is conducted through heterogeneous thermal,and 3D NoC system suffers from thermal problems.To alleviate the seriousness of the thermal problem,the distribution of data packets usually relies on traffic information or historical temperature information.However,thermal problems in 3D NoC cannot be solved only based on traffic or temperature information.Therefore,we propose a Score-Based Traffic-and Thermal-Aware Adaptive Routing(STTAR)that applies traffic load and temperature information to routing.First,the STTAR dynamically adjusts the input and output buffer lengths of each router with traffic load information to limit routing resources in overheated areas and control the rate of temperature rise.Second,STTAR adopts a scoring strategy based on temperature and the number of free slots in the buffer to avoid data packets being transmitted to high-temperature areas and congested areas and to improve the rationality of selecting routing output nodes.In our experiments,the proposed scoring Score-Based Traffic-and Thermal-Aware Adaptive Routing(STTAR)scheme can increase the throughput by about 14.98%to 47.90%and reduce the delay by about 10.80%to 35.36%compared with the previous works.展开更多
Hardware prefetching and replacement policies are two techniques to improve the performance of the memory subsystem.While prefetching hides memory latency and improves performance,interactions take place with the cach...Hardware prefetching and replacement policies are two techniques to improve the performance of the memory subsystem.While prefetching hides memory latency and improves performance,interactions take place with the cache replacement policies,thereby introducing performance variability in the application.To improve the accuracy of reuse of cache blocks in the presence of hardware prefetching,we propose Prefetch-Adaptive Intelligent Cache Replacement Policy(PAIC).PAIC is designed with separate predictors for prefetch and demand requests,and uses machine learning to optimize reuse prediction in the presence of prefetching.By distinguishing reuse predictions for prefetch and demand requests,PAIC can better combine the performance benefits from prefetching and replacement policies.We evaluate PAIC on a set of 27 memory-intensive programs from the SPEC 2006 and SPEC 2017.Under single-core configuration,PAIC improves performance over Least Recently Used(LRU)replacement policy by 37.22%,compared with improvements of 32.93%for Signature-based Hit Predictor(SHiP),34.56%for Hawkeye,and 34.43%for Glider.Under the four-core configuration,PAIC improves performance over LRU by 20.99%,versus 13.23%for SHiP,17.89%for Hawkeye and 15.50%for Glider.展开更多
When multiple central processing unit(CPU)cores and integrated graphics processing units(GPUs)share off-chip main memory,CPU and GPU applications compete for the critical memory resource.This causes serious resource c...When multiple central processing unit(CPU)cores and integrated graphics processing units(GPUs)share off-chip main memory,CPU and GPU applications compete for the critical memory resource.This causes serious resource competition and has a negative impact on the overall performance of the system.We describe the competition for shared-memory resources in a CPU-GPU heterogeneous multi-core architecture,and a sharedmemory request scheduling strategy based on perceptual and predictive batch-processing is proposed.By sensing the CPU and GPU memory request conditions in the request buffer,the proposed scheduling strategy estimates the GPU latency tolerance and reduces mutual interference between CPU and GPU by processing CPU or GPU memory requests in batches.According to the simulation results,the scheduling strategy improves CPU performance by8.53%and reduces mutual interference by 10.38%with low hardware complexity.展开更多
Synoptic meteorology is a branch of meteorology that uses synoptic weather observations and charts for the diagnosis,study,and forecasting of weather.Weather refers to the specific state of the atmosphere near the Ea...Synoptic meteorology is a branch of meteorology that uses synoptic weather observations and charts for the diagnosis,study,and forecasting of weather.Weather refers to the specific state of the atmosphere near the Earth’s surface during a short period of time.The spatial distribution of meteorological elements in the atmosphere can be represented by a variety of transient weather phenomena,which are caused by weather systems of different spatial and temporal scales.Weather is closely related to people’s life,and its development and evolution have always been the focus of atmospheric scientific research and operation.The development of synoptic meteorology is closely related to the development of observation systems,dynamical theories and numerical models.In China,observation networks have been built since the early 1950 s.Up to now,a comprehensive meteorological observation systembased on ground,air and space has been established.In particular,the development of a new generation of dense radar networks,the development of the Fengyun satellite series and the implementation of a series of large field experiments have brought our understanding of weather from large-scale environment to thermal dynamics,cloud microphysical structure and evolution characteristics of meso and micro-scale weather systems.The development of observation has also promoted the development of theory,numerical model and simulation.In the early days,China mainly used foreign numerical models.Lately,China has developed numerical model systems with independent intellectual property rights.Based on the results of high-resolution numerical simulations,in-depth understanding of the initiation and evolution mechanism and predictability of weather at different scales has been obtained.Synoptic meteorology has gradually changed from an initially independent development to a multidisciplinary approach,and the interaction between weather and the change of climate and environment has become a hot and frontier topic in atmospheric science.This paper reviews the important scientific and technological achievements made in China over the past 70 years in the fields of synoptic meteorology based on the literatures in China and abroad,from six aspects respectively including atmospheric dynamics,synoptic-scale weather,typhoon and tropical weather,severe convective weather,numerical weather prediction and data assimilation,weather and climate,atmospheric physics and atmospheric environment.展开更多
Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this p...Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this paper, a finite element model of proximal femur was developed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis. Cementless stems made of titanium, two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone. The distributions of bone density, von Mises stress, and interface shear stress were obtained. All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur, but the degrees of stress shielding were different. The amount of bone loss caused by titanium implant was in agreement with the clinical obser- vation. The FGM stems caused less bone loss than that of the titanium stem, in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively, and the interface shear stresses were more evenly distributed in the model with FGM 1 stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems. The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view. The next steps are to fabricate FGM stern and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.展开更多
The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless...The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem, flexible 'iso-elastic' stem, one-dimensional Functionally Graded Material (FGM) stern and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis. The distributions of bone density, von Mises stress, and interface shear stress were obtained. The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials, thus the host bone is well preserved. Accordingly, the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view. The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants, which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.展开更多
Objective:Mutations in LIM domain binding 3(LDB3)gene cause idiopathic dilated cardiomyopathy(IDCM),a structural heart disease with a complicated genetic background.However,the association of polymorphisms in the LDB3...Objective:Mutations in LIM domain binding 3(LDB3)gene cause idiopathic dilated cardiomyopathy(IDCM),a structural heart disease with a complicated genetic background.However,the association of polymorphisms in the LDB3 gene with susceptibility to IDCM in Chinese populations remains unexplored as dose the impact on clinical presentation.Methods:We sequenced all exons and the adjacent part of introns of the LDB3 gene in 159 Chinese Han IDCM patients and 247 healthy controls.Then we detected the distribution of polymorphisms in the LDB3 gene in all participants and assessed their associations with risk of IDCM.Additionally,we conducted a stratified genotype–phenotype correlation analysis.Results:The A allele of rs4468255 was significantly associated with IDCM(P<0.01).The rs4468255,rs11812601,rs56165849,and rs3740346 were also associated with diastolic blood pressure(DBP)and left ventricular ejection fraction(LVEF)(P<0.05).Notably,a higher frequency of rs4468255 polymorphism was observed in implantable cardioverter defibrillator(ICD)recipients under a recessive model(P<0.01),whereas the significant association disappeared after adjusting for potential confounders.However,in the dominant model,notable correlations could only be observed after adjusting for multi parameters.Conclusions:The rs4468255 was significantly correlated with IDCM of Chinese Han population.A allele of rs4468255 is higher in IDCM patients with ICD implantation,suggesting the influence of genetic background in the generation of this response.In addition,rs11812601,rs56165849,and rs3740346 in LDB3 show association with brain natriuretic peptide,DBP,and LVEF levels in patients with IDCM but did not show any association with IDCM susceptibility.展开更多
基金the support of the Australia Research Council (ARC) through the Discovery Project (DP230101040)the Natural Science Foundation of Shandong Province (ZR2022QB139, No. ZR2020KF025)+3 种基金the Starting Research Fund (Grant No. 20210122) from the Ludong Universitythe Natural Science Foundation of China (12274190) from the Ludong Universitythe support of the Shandong Youth Innovation Team Introduction and Education Programthe Special Fund for Taishan Scholars Project (No. tsqn202211186) in Shandong Province。
文摘Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis.
基金The study was supported by Yuying Program Incubation Project of General Hospital of Center Theater(ZZYFH202104)Wuhan Young and Middle-Aged Medical Backbone Talent Project 2020(2020-55)Logistics Research Program Project 2019(CLB19J029).
文摘Objective:In the realm of Class I pathogens,Burkholderia pseudomallei(BP)stands out for its propensity to induce severe pathogenicity.Investigating the intricate interactions between BP and host cells is imperative for comprehending the dynamics of BP infection and discerning biomarkers indicative of the host cell response process.Methods:mRNA extraction from BP-infected mouse macrophages constituted the initial step of our study.Employing gene expression arrays,the extracted RNA underwent conversion into digital signals.The percentile shift method facilitated data processing,with the identification of genes manifesting significant differences accomplished through the application of the t-test.Subsequently,a comprehensive analysis involving Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway was conducted on the differentially expressed genes(DEGs).Leveraging the ESTIMATE algorithm,gene signatures were utilized to compute risk scores for gene expression data.Support vector machine analysis and gene enrichment scores were instrumental in establishing correlations between biomarkers and macrophages,followed by an evaluation of the predictive power of the identified biomarkers.Results:The functional and pathway associations of the DEGs predominantly centered around G protein-coupled receptors.A noteworthy positive correlation emerged between the blue module,consisting of 416 genes,and the StromaScore.FZD4,identified through support vector machine analysis among intersecting genes,indicated a robust interaction with macrophages,suggesting its potential as a robust biomarker.FZD4 exhibited commendable predictive efficacy,with BP infection inducing its expression in both macrophages and mouse lung tissue.Western blotting in macrophages confirmed a significant upregulation of FZD4 expression from 0.5 to 24 h post-infection.In mouse lung tissue,FZD4 manifested higher expression in the cytoplasm of pulmonary epithelial cells in BP-infected lungs than in the control group.Conclusion:Thesefindings underscore the upregulation of FZD4 expression by BP in both macrophages and lung tissue,pointing to its prospective role as a biomarker in the pathogenesis of BP infection.
基金National Natural Science Foundation of China,Grant/Award Number:81770252,82030014,82271606 and U22A20267Binjiang Institute of Zhejiang University,Grant/Award Number:ZY202205SMKY001Key Program of Major Science and Technology Projects in Zhejiang Province,Grant/Award Number:2021C03097 and 2022C03063。
文摘Background:Calcific aortic valve stenosis(CAVS)is one of the most challenging heart diseases in clinical with rapidly increasing prevalence.However,study of the mecha-nism and treatment of CAVS is hampered by the lack of suitable,robust and efficient models that develop hemodynamically significant stenosis and typical calcium deposi-tion.Here,we aim to establish a mouse model to mimic the development and features of CAVS.Methods:The model was established via aortic valve wire injury(AVWI)combined with vitamin D subcutaneous injected in wild type C57/BL6 mice.Serial transthoracic echocardiography was applied to evaluate aortic jet peak velocity and mean gradi-ent.Histopathological specimens were collected and examined in respect of valve thickening,calcium deposition,collagen accumulation,osteogenic differentiation and inflammation.Results:Serial transthoracic echocardiography revealed that aortic jet peak velocity and mean gradient increased from 7 days post model establishment in a time depend-ent manner and tended to be stable at 28 days.Compared with the sham group,sim-ple AVWI or the vitamin D group,the hybrid model group showed typical pathological features of CAVS,including hemodynamic alterations,increased aortic valve thicken-ing,calcium deposition,collagen accumulation at 28 days.In addition,osteogenic dif-ferentiation,fibrosis and inflammation,which play critical roles in the development of CAVS,were observed in the hybrid model.Conclusions:We established a novel mouse model of CAVS that could be induced efficiently,robustly and economically,and without genetic intervention.It provides a fast track to explore the underlying mechanisms of CAVS and to identify more effec-tive pharmacological targets.
基金supported in part by the Nature Science Foundation of China under Grant Nos.41875046,42175004National Key Research and Development Program of China under Grant No.2017YFC1501601Shanghai“Science and Technology Innovation Action Plan”Yangtze River Delta Science and Technology Innovation Community Field Project Grant 21002410200。
文摘A statistical analysis of the initial vortexes leading to tropical cyclone(TC)formation in the western North Pacific(WNP)is conducted with the ECMWF ERA5 reanalysis data from 1999 to 2018.It is found that TCs in the WNP basically originate from three kinds of vortexes,i.e.,a mid-level vortex(MV),a low-level vortex(LV),and a relatively deep vortex with notable vorticity in both the lower and middle troposphere(DV).Among them,LV and DV account for 47.9%and 24.2%of tropical cyclogenesis events,respectively,while only 27.9%of TCs develop from the MV,which is much lower than that which occurs in the North Atlantic and eastern Pacific.Such a difference might be ascribed to the active monsoon systems in the WNP all year round.Due to the nearly upright structure of mid-level convergence in the early pre-genesis stage,TC genesis efficiency is the highest in DV.Compared with MV,LV generally takes a shorter time to intensify to a TC because of the higher humidity and the stronger low-level cyclonic circulation,which is related to air-sea interaction and boundary-layer convergence.Further examination of the relationship between tropical cyclogenesis and large-scale flow patterns indicate that the TC genesis events associated with LV are primarily related to the monsoon shear line,monsoon confluence region,and monsoon gyre,while those associated with MV are frequently connected with easterly waves and wave energy dispersion of preexisting TC.Compared with other flow patterns,tropical cyclones usually form and intensify faster in the monsoon confluence region.
基金This work was supported by the National Natural Science Foundations of China(Nos.81972532,81772896,81602383 and 81472524)the Science and Technology Planning Project of Guangzhou City of China(No.2017004020102).
文摘Tertiary lymphoid structures(TLS)are ectopic lymphoid structures in cancers that are largely associated with favourable prognosis.However,the prognostic value of TLSs in oral squamous cell carcinoma(OSCC)is largely unknown,and the association between tumour infiltrating lymphocytes(TILs)and TLSs has been rarely explored in OSCC.In this study,associated markers of TLS,including peripheral node address(PNAd)in high endothelial venules,CD20 in B cells and CD3 in T cells,were examined in 168 OSCC patients,and survival analysis was performed between TLS-positive and TLS-negative cohorts.We detected the presence of TILs by staining CD8+cytotoxic T cells and CD57+NK cells as well.TLSs appeared as highly organized structures in 45(26.8%)cases.TLSpositive patients had a better 5-year overall survival(OS)rate(88.9%vs.56.1%,P<0.001)and relapse-free survival(RFS)rate(88.9%vs.63.4%,P=0.002).Moreover,the presence of TLS was an independent prognostic factor for both the 5-year OS rate(hazard ratio[HR]=3.784;95%confidence interval[CI],1.498–9.562)and RFS rate(HR=3.296;95%CI,1.279–8.490)in multivariate analysis.Furthermore,a higher density of CD8+T cells and CD57+NK cells was found in TLS-positive sections than in TLS-negative counterparts(P<0.001),and their combination provided a higher predictive accuracy(AUC=0.730;95%CI,0.654–0.805).In conclusion,our results suggest that TLS is an independent positive prognostic factor for OSCC patients.These findings provide a theoretical basis for the future diagnostic and therapeutic value of TLSs in OSCC treatment.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41475074, 41775063 and 41475046)
文摘Climatologically, August is the month with the most tropical cyclone(TC) formation over the western North Pacific(WNP) during the typhoon season. In this study, the reason for abnormal TC activity during August is discussed—especially August 2014, when no TCs formed. The large-scale background of August 2014 is presented, with low-level large-scale easterly anomalies and anticyclonic anomalies dominating over the main TC genesis region, a weak monsoon trough system,and a strong WNP subtropical high(WPSH), leading to significantly reduced low-level convergence, upper-level divergence,and mid-level upward motion. These unfavorable large-scale conditions suppressed convection and cyclogenesis. In August2014, equatorial waves were inactive within the negative phase of the Madden–Julian Oscillation(MJO), with fewer tropical disturbances. Although the low-level vorticity and convection of those disturbances were partly promoted by the convective envelopes of equatorial waves, the integral evolution of disturbances, as well as the equatorial waves, were suppressed when propagating into the negative MJO phase. Moreover, the upper-level potential vorticity(PV) streamers associated with anticyclonic Rossby wave breaking events imported extratropical cold and dry air into the tropics. The peripheral tropospheric dryness and enhanced vertical wind shear by PV streamer intrusion combined with the negative MJO phase were responsible for the absence of TC formation over the WNP in August 2014.
基金supported by the National Natural Science Foundations of China (Nos. 81972532, 81991500, 82101017, 81902778, and 81500864)Guangdong Basic and Applied Basic Research Foundation (2020A1515110741)
文摘The heterogeneity of exhausted T cells(Tex)is a critical determinant of immune checkpoint blockade therapy efficacy.However,few studies have explored exhausted T cell subpopulations in human cancers.In the present study,we examined samples from two cohorts of 175 patients with head and neck squamous cell cancer(HNSCC)by multiplex immunohistochemistry(mIHC)to investigate two subsets of Tex,CD8+PD1+TCF1+progenitor exhausted T cells(TCF1+Texprog)and CD8+PD1+TCF1−terminally exhausted T cells(TCF1−Texterm).Moreover,fresh tumor samples from 34 patients with HNSCC were examined by flow cytometry and immunohistochemistry to further investigate their properties and cytotoxic capabilities and their correlation with regulatory T cells(Tregs)in the tumor immune microenvironment(TIME).mIHC and flow cytometry analysis showed that TCF1−Texterm represented a greater proportion of CD8+PD1+Tex than TCF1+Texprog in most patients.TCF1+Texprog produced abundant TNFα,while TCF1−Texterm expressed higher levels of CD103,TIM-3,CTLA-4,and TIGIT.TCF1−Texterm exhibited a polyfunctional TNFα+GZMB+IFNγ+phenotype;and were associated with better overall survival and recurrence-free survival.The results also indicated that larger proportions of TCF1−Texterm were accompanied by an increase in the proportion of Tregs.Therefore,it was concluded that TCF1−Texterm was the major CD8+PD1+Tex subset in the HNSCC TIME and that these cells favor patient survival.A high proportion of TCF1−Texterm was associated with greater Treg abundance.
基金This work is supported by Beijing Natural Science Foundation[4192007]the National Natural Science Foundation of China[61202076]Beijing University of Technology Project No.2021C02.
文摘In recent years,with the development of processor architecture,heterogeneous processors including Center processing unit(CPU)and Graphics processing unit(GPU)have become the mainstream.However,due to the differences of heterogeneous core,the heterogeneous system is now facing many problems that need to be solved.In order to solve these problems,this paper try to focus on the utilization and efficiency of heterogeneous core and design some reasonable resource scheduling strategies.To improve the performance of the system,this paper proposes a combination strategy for a single task and a multi-task scheduling strategy for multiple tasks.The combination strategy consists of two sub-strategies,the first strategy improves the execution efficiency of tasks on the GPU by changing the thread organization structure.The second focuses on the working state of the efficient core and develops more reasonable workload balancing schemes to improve resource utilization of heterogeneous systems.The multi-task scheduling strategy obtains the execution efficiency of heterogeneous cores and global task information through the processing of task samples.Based on this information,an improved ant colony algorithm is used to quickly obtain a reasonable task allocation scheme,which fully utilizes the characteristics of heterogeneous cores.The experimental results show that the combination strategy reduces task execution time by 29.13%on average.In the case of processing multiple tasks,the multi-task scheduling strategy reduces the execution time by up to 23.38%based on the combined strategy.Both strategies can make better use of the resources of heterogeneous systems and significantly reduce the execution time of tasks on heterogeneous systems.
文摘Convectively coupled equatorial Rossby waves(ERW)modulate tropical cyclone activities over tropical oceans.This study presents a survey of the statistical relationship between intraseasonal ERWs and tropical cyclone genesis(TCG)over major global TC basins using four-decade-long outgoing longwave radiation(OLR)and TC best-track datasets.Intraseasonal ERWs are identified from the OLR anomalies using an empirical orthogonal function(EOF)analysis method without imposing equatorial symmetry.We find that westward-propagating ERWs are most significant in four tropical ocean basins over the summer hemisphere and that ERWs exhibit similar northeast-southwest(southeast-northwest)tilted phase lines in the northern(southern)hemisphere,with an appreciable poleward advance of wave energy in most TC basins.The EOF-based ERW indices quantitatively show that ERWs significantly modulate TC genesis.The convectively active(suppressed)phases of ERWs coincide with increased(reduced)TCG occurrences.The TCG modulation by ERWs achieves the maximum where the ERWs propagate through the climatological TCG hotspots.As a result,the total number of TCG occurrences in the TC basins varies significantly according to the ERW phase.The ERW-TCG relationship is significant over the northwestern Pacific Ocean,northeastern Pacific Ocean,and the northern Indian Ocean during the northern summer seasons.In the southern summer season,the ERW-TCG relationship is significant over the southern Indian Ocean,Indonesian-Australia basin,and the southwestern Pacific Ocean.However,ERW activities are weak in the main TC development region of the Atlantic Ocean;and the impact on Atlantic TCG appears to be insignificant.
基金supported in part by the National Key Research and Development Program of China(Grant No.2017YFC1501601)the National Natural Science Foundation of China(Grant No.41875067)。
文摘As a follow-up of a previously published article on the contribution of tropical waves,this study explores the evolution of the mid-tropospheric mesoscale cyclonic vortex(MV)during the formation of Typhoon Megi(2010)with a successful cloud-resolving simulation.It is found that the formation and intensification of the MV were related to the deep convection and subsequent stratiform precipitation,while the weakening of the MV was related to the shallow convection.Both the upward transport of vorticity related to the deep convection and the horizontal convergence associated with the stratiform precipitation contributed to the formation and intensification of the MV.Even though the latter was dominant,the former could not be ignored,especially in the early stage of the MV.The MV played dual roles in the formation of Megi.On the one hand,the formation and intensification of MV were primarily associated with the stratiform precipitation,which induced the low-level divergence inhibiting the spin-up of the near-surface cyclonic circulation.On the other hand,the coupled low-level cold core under the MV benefited the accumulation of the convective available potential energy(CAPE),which was favorable for the convective activity.A sensitivity experiment with the evaporative cooling turned off indicated that the development of the MV retarded the genesis process of Megi.
基金supported by the National Natural Science Foundation of China(Grant No.81500864)Guangzhou Science and Technology Project(Grant No.201804010040)Sun Yat-Sen University Young Teacher Cultivation Project(Grant No.18ykpy29).
文摘Head and neck squamous cell carcinoma is the sixth most common tumor worldwide,and half of head and neck squamous cell carcinoma patients are with oral squamous cell carcinoma(OSCC).300,000 new cases of OSCC were reported annually.Even with multi-modality treatment,the prognosis of OSCC remains unsatisfactory.Thus,it is urgent to discover novel therapeutic targets for OSCC.Some microarray studies have revealed that Keratin 4(KRT4)is downregulated in OSCC,whereas its role in OSCC development remains unknown.The present study revealed that KRT4 suppressed OSCC progression by inducing cell apoptosis and inhibiting cell invasion.In addition,KRT4 over-expression inhibited autophagy by blocking the interaction of autophagy-related 4B cysteine peptidase(ATG4B)and microtubule-associated protein 1A/1B light chain 3(LC3)to regulate apoptosis and invasion of OSCC.In conclusion,KRT4 played an important role in OSCC development through regulating ATG4B-mediated autophagy and may be a novel therapeutic drug target of OSCC.
基金The work of BJUT researchers Fang et al.was partly supported by the Beijing Natural Science Foundation(4192007)the National Natural Science Foundation of China(61202076)Beijing University of Technology Project No.2021C02.
文摘Since the three-dimensional Network on Chip(3D NoC)uses through-silicon via technology to connect the chips,each silicon layer is conducted through heterogeneous thermal,and 3D NoC system suffers from thermal problems.To alleviate the seriousness of the thermal problem,the distribution of data packets usually relies on traffic information or historical temperature information.However,thermal problems in 3D NoC cannot be solved only based on traffic or temperature information.Therefore,we propose a Score-Based Traffic-and Thermal-Aware Adaptive Routing(STTAR)that applies traffic load and temperature information to routing.First,the STTAR dynamically adjusts the input and output buffer lengths of each router with traffic load information to limit routing resources in overheated areas and control the rate of temperature rise.Second,STTAR adopts a scoring strategy based on temperature and the number of free slots in the buffer to avoid data packets being transmitted to high-temperature areas and congested areas and to improve the rationality of selecting routing output nodes.In our experiments,the proposed scoring Score-Based Traffic-and Thermal-Aware Adaptive Routing(STTAR)scheme can increase the throughput by about 14.98%to 47.90%and reduce the delay by about 10.80%to 35.36%compared with the previous works.
基金supported by the Natural Science Foundation of Beijing under Grant No.4192007the National Natural Science Foundation of China under Grant No.61202076.
文摘Hardware prefetching and replacement policies are two techniques to improve the performance of the memory subsystem.While prefetching hides memory latency and improves performance,interactions take place with the cache replacement policies,thereby introducing performance variability in the application.To improve the accuracy of reuse of cache blocks in the presence of hardware prefetching,we propose Prefetch-Adaptive Intelligent Cache Replacement Policy(PAIC).PAIC is designed with separate predictors for prefetch and demand requests,and uses machine learning to optimize reuse prediction in the presence of prefetching.By distinguishing reuse predictions for prefetch and demand requests,PAIC can better combine the performance benefits from prefetching and replacement policies.We evaluate PAIC on a set of 27 memory-intensive programs from the SPEC 2006 and SPEC 2017.Under single-core configuration,PAIC improves performance over Least Recently Used(LRU)replacement policy by 37.22%,compared with improvements of 32.93%for Signature-based Hit Predictor(SHiP),34.56%for Hawkeye,and 34.43%for Glider.Under the four-core configuration,PAIC improves performance over LRU by 20.99%,versus 13.23%for SHiP,17.89%for Hawkeye and 15.50%for Glider.
基金Project supported by the National Natural Science Foundation of China(Nos.62276011 and 61202076)the Natural Science Foundation of Beijing,China(No.4192007)。
文摘When multiple central processing unit(CPU)cores and integrated graphics processing units(GPUs)share off-chip main memory,CPU and GPU applications compete for the critical memory resource.This causes serious resource competition and has a negative impact on the overall performance of the system.We describe the competition for shared-memory resources in a CPU-GPU heterogeneous multi-core architecture,and a sharedmemory request scheduling strategy based on perceptual and predictive batch-processing is proposed.By sensing the CPU and GPU memory request conditions in the request buffer,the proposed scheduling strategy estimates the GPU latency tolerance and reduces mutual interference between CPU and GPU by processing CPU or GPU memory requests in batches.According to the simulation results,the scheduling strategy improves CPU performance by8.53%and reduces mutual interference by 10.38%with low hardware complexity.
基金supported by the National Natural Science Foundation of China (Grant No. 41425018)the National Key Research and Development Program of China (Grant No. 2017YFC1501601)+3 种基金the National Natural Science Foundation of China (Grant No. 41675045)the National Key Research and Development Program of China (Grant No. 2017YFC1501904)the National Natural Science Foundation of China (Grant Nos. 41875066, 41675108 & 41875051)the Special Program on the Monitoring, Warning and Prevention of Major Natural Disasters (Grant No. 2018YFC1506702)
文摘Synoptic meteorology is a branch of meteorology that uses synoptic weather observations and charts for the diagnosis,study,and forecasting of weather.Weather refers to the specific state of the atmosphere near the Earth’s surface during a short period of time.The spatial distribution of meteorological elements in the atmosphere can be represented by a variety of transient weather phenomena,which are caused by weather systems of different spatial and temporal scales.Weather is closely related to people’s life,and its development and evolution have always been the focus of atmospheric scientific research and operation.The development of synoptic meteorology is closely related to the development of observation systems,dynamical theories and numerical models.In China,observation networks have been built since the early 1950 s.Up to now,a comprehensive meteorological observation systembased on ground,air and space has been established.In particular,the development of a new generation of dense radar networks,the development of the Fengyun satellite series and the implementation of a series of large field experiments have brought our understanding of weather from large-scale environment to thermal dynamics,cloud microphysical structure and evolution characteristics of meso and micro-scale weather systems.The development of observation has also promoted the development of theory,numerical model and simulation.In the early days,China mainly used foreign numerical models.Lately,China has developed numerical model systems with independent intellectual property rights.Based on the results of high-resolution numerical simulations,in-depth understanding of the initiation and evolution mechanism and predictability of weather at different scales has been obtained.Synoptic meteorology has gradually changed from an initially independent development to a multidisciplinary approach,and the interaction between weather and the change of climate and environment has become a hot and frontier topic in atmospheric science.This paper reviews the important scientific and technological achievements made in China over the past 70 years in the fields of synoptic meteorology based on the literatures in China and abroad,from six aspects respectively including atmospheric dynamics,synoptic-scale weather,typhoon and tropical weather,severe convective weather,numerical weather prediction and data assimilation,weather and climate,atmospheric physics and atmospheric environment.
基金This work is supported by the National Natural Science Foundation of China (Nos. 10832012 and 10972090), and the 973 Program (No. 2012CB821202).
文摘Bone remodeling simulation is an effective tool for the prediction of long-term effect of implant on the bone tissue, as well as the selection of an appropriate implant in terms of architecture and material. In this paper, a finite element model of proximal femur was developed to simulate the structures of internal trabecular and cortical bones by incorporating quantitative bone functional adaptation theory with finite element analysis. Cementless stems made of titanium, two types of Functionally Graded Material (FGM) and flexible 'iso-elastic' material as comparison were implanted in the structure of proximal femur respectively to simulate the bone remodeling behaviors of host bone. The distributions of bone density, von Mises stress, and interface shear stress were obtained. All the prosthetic stems had effects on the bone remodeling behaviors of proximal femur, but the degrees of stress shielding were different. The amount of bone loss caused by titanium implant was in agreement with the clinical obser- vation. The FGM stems caused less bone loss than that of the titanium stem, in which FGM I stem (titanium richer at the top to more HAP/Col towards the bottom) could relieve stress shielding effectively, and the interface shear stresses were more evenly distributed in the model with FGM 1 stem in comparison with those in the models with FGM II (titanium and bioglass) and titanium stems. The numerical simulations in the present study provided theoretical basis for FGM as an appropriate material of femoral implant from a biomechanical point of view. The next steps are to fabricate FGM stern and to conduct animal experiments to investigate the effects of FGM stem on the remodeling behaviors using animal model.
基金This work is supported by the National Natural Science Foundation of China (Nos. 10832012, 10872061 and 10972090) and Scientific Advancing Front and Interdiscipline Innovation Project of Jilin University (No. 200903169).
文摘The objective of this paper is to identify the effects of materials of cementless femoral stem on the functional adaptive behaviors of bone. The remodeling behaviors of a two-dimensional simplified model of cementless hip prosthesis with stiff stem, flexible 'iso-elastic' stem, one-dimensional Functionally Graded Material (FGM) stern and two-dimensional FGM stem for the period of four years after prosthesis replacement were quantified by incorporating the bone remodeling algorithm with finite element analysis. The distributions of bone density, von Mises stress, and interface shear stress were obtained. The results show that two-dimensional FGM stem may produce more mechanical stimuli and more uniform interface shear stress compared with the stems made of other materials, thus the host bone is well preserved. Accordingly, the two-dimensional FGM stem is an appropriate femoral implant from a biomechanical point of view. The numerical simulation in this paper can provide a quantitative computational paradigm for the changes of bone morphology caused by implants, which can help to improve the design of implant to reduce stress shielding and the risk of bone-prosthesis interface failure.
基金the Key Projects of Zhejiang Medical and Health Science and Technology Plan(Provincial and Ministerial Co-construction)(No.WKJ-ZJ-1819)the Fundamental Research Funds for the Zhejiang Province Universities(No.2019XZZX003-15)the National Natural Science Foundation of China(No.81470370)
文摘Objective:Mutations in LIM domain binding 3(LDB3)gene cause idiopathic dilated cardiomyopathy(IDCM),a structural heart disease with a complicated genetic background.However,the association of polymorphisms in the LDB3 gene with susceptibility to IDCM in Chinese populations remains unexplored as dose the impact on clinical presentation.Methods:We sequenced all exons and the adjacent part of introns of the LDB3 gene in 159 Chinese Han IDCM patients and 247 healthy controls.Then we detected the distribution of polymorphisms in the LDB3 gene in all participants and assessed their associations with risk of IDCM.Additionally,we conducted a stratified genotype–phenotype correlation analysis.Results:The A allele of rs4468255 was significantly associated with IDCM(P<0.01).The rs4468255,rs11812601,rs56165849,and rs3740346 were also associated with diastolic blood pressure(DBP)and left ventricular ejection fraction(LVEF)(P<0.05).Notably,a higher frequency of rs4468255 polymorphism was observed in implantable cardioverter defibrillator(ICD)recipients under a recessive model(P<0.01),whereas the significant association disappeared after adjusting for potential confounders.However,in the dominant model,notable correlations could only be observed after adjusting for multi parameters.Conclusions:The rs4468255 was significantly correlated with IDCM of Chinese Han population.A allele of rs4468255 is higher in IDCM patients with ICD implantation,suggesting the influence of genetic background in the generation of this response.In addition,rs11812601,rs56165849,and rs3740346 in LDB3 show association with brain natriuretic peptide,DBP,and LVEF levels in patients with IDCM but did not show any association with IDCM susceptibility.