The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylest...The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.展开更多
The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the chan...The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.展开更多
In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of...In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection.展开更多
Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fi...Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.展开更多
The accurate forecasting of tropical cyclones(TCs)is a challenging task.The purpose of this study was to investigate the effects of a dry-mass conserving(DMC)hydrostatic global spectral dynamical core on TC simulation...The accurate forecasting of tropical cyclones(TCs)is a challenging task.The purpose of this study was to investigate the effects of a dry-mass conserving(DMC)hydrostatic global spectral dynamical core on TC simulation.Experiments were conducted with DMC and total(moist)mass conserving(TMC)dynamical cores.The TC forecast performance was first evaluated considering 20 TCs in the West Pacific region observed during the 2020 typhoon season.The impacts of the DMC dynamical core on forecasts of individual TCs were then estimated.The DMC dynamical core improved both the track and intensity forecasts,and the TC intensity forecast improvement was much greater than the TC track forecast improvement.Sensitivity simulations indicated that the DMC dynamical core-simulated TC intensity was stronger regardless of the forecast lead time.In the DMC dynamical core experiments,three-dimensional winds and warm and moist cores were consistently enhanced with the TC intensity.Drier air in the boundary inflow layer was found in the DMC dynamical core experiments at the early simulation times.Water vapor mixing ratio budget analysis indicated that this mainly depended on the simulated vertical velocity.Higher updraft above the boundary layer yielded a drier boundary layer,resulting in surface latent heat flux(SLHF)enhancement,the major energy source of TC intensification.The higher DMC dynamical core-simulated updraft in the inner core caused a higher net surface rain rate,producing higher net internal atmospheric diabatic heating and increasing the TC intensity.These results indicate that the stronger DMC dynamical coresimulated TCs are mainly related to the higher DMC vertical velocity.展开更多
[Objectives]The paper was to study molecular characterization,morphology and pathogenicity of Curvularia pseudobrachyspora,a new causal agent of leaf spot on banana.[Methods]Banana(Musa acuminate)leaves with streaks o...[Objectives]The paper was to study molecular characterization,morphology and pathogenicity of Curvularia pseudobrachyspora,a new causal agent of leaf spot on banana.[Methods]Banana(Musa acuminate)leaves with streaks or long ellipse-shaped lesions were sampled in an orchard of Danzhou City,Hainan Province,China in 2021.Fungus isolates were isolated from the diseased tissues and further identified as C.pseudobrachyspora based on morphological characteristics of colony,conidiophore and spore,phylogenetic analyses of the ITS region,GAPDH and TEF-1αgenes.[Results]In the pathogenicity test,the fungus re-isolated from inoculated leaves with necrotic lesions was identified morphologically and molecularly,fulfilling Koch's postulates.[Conclusions]C.pseudobrachyspora is a new pathogen causing leaf spot of banana in China and the world.展开更多
[Objectives]The paper was to identify Alternaria alternata causing leaf spot disease on Huangdi banana in China.[Methods]Fungal isolates were isolated and identified by morphological features,molecular identification ...[Objectives]The paper was to identify Alternaria alternata causing leaf spot disease on Huangdi banana in China.[Methods]Fungal isolates were isolated and identified by morphological features,molecular identification and pathogenicity test.[Results]There were light to dark brown,tiny oval spots on leaves.The causal agent isolated from affected leaves was identified as A.alternata based on the morphological properties,coupled with sequence analyses of the internal transcribed spacer(ITS)region,large subunit ribosomal DNA(LSU rDNA)and the translation elongation factor 1-alpha(TEF-1α)gene.Koch s postulates were fulfilled by successful re-isolation of pathogen from the artificial inoculated leaves.[Conclusions]To our knowledge,this is the first report of leaf spot caused by A.alternata on Huangdi banana in China.The identification of A.alternata as the causal agent of the observed leaf spot disease on Huangdi banana is critical to the prevention and control of this disease in the future.展开更多
Background:Dry eye is a chronic inflammatory disease of the ocular surface that is caused by multiple factors,characterized by pain,visual disturbance,and ocular damage.It is a common ophthalmic disease worldwide and ...Background:Dry eye is a chronic inflammatory disease of the ocular surface that is caused by multiple factors,characterized by pain,visual disturbance,and ocular damage.It is a common ophthalmic disease worldwide and a hot research field for scholars both domestically and internationally.This article employs network pharmacology methods to analyze the mechanism of Chrysanthemum in treating dry eye,which is a promising approach.Methods:The TCMSP(http://tcmspw.com/tcmsp.php)was used to screen for candidate active ingredient molecules of chrysanthemum with oral bioavailability≥30%and drug similarity to chrysanthemum≥0.18 as parameters.The active ingredients of chrysanthemum were searched using the“Related Targets”column in the TCMSP,followed by target prediction.Subsequently,Cytoscape 3.6.0 was employed to construct a compound-target network for chrysanthemum.The Online Mendelian Inheritance in Man and DisGeNET databases were used to identify pathogenic genes associated with dry eye.Furthermore,the STRING database was used to construct an interaction network and bar graph of intersecting target proteins in chrysanthemum to analyze protein interactions and core targets.To obtain key targets of active ingredients of chrysanthemum for treating dry eye,active ingredients targets of chrysanthemum and dry eye targets were intersected using Venny.Finally,a drug-active ingredient-key target-disease network was constructed.Gene Ontology functional annotation of key targets was performed using the WEBGESTALT database,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was performed using the REACTOM database.Results:Eighty active ingredients of chrysanthemum corresponding to targets were obtained.Among active ingredients,508 predicted targets were identified,along with 4180 genes associated with dry eye and 45 key targets of chrysanthemum for treating dry eye.The functions of key targets primarily include regulation of gene expression,oxidative stress,immune response,apoptosis,proliferation,regulation of cellular inflammation-related factors,and angiogenesis.The primary pathways associated with key targets include interleukin signaling,metabolism,cytokine signaling in the immune system,immune system,and signal transduction.Conclusion:Chrysanthemum facilitates regulation through multiple molecules,targets,and pathways for treating dry eye,primarily inhibiting inflammation-related factors and pathways,thereby reducing inflammation of lacrimal gland tissue and improving dry eye.展开更多
基金funded by the National Natural Science Foundation of China(32072022)the Nanfan Special Project,CAAS(YBXM07)the Hainan Yazhou Bay Seed Laboratory,China(B23CJ0208)。
文摘The germination process of seeds is influenced by the interplay between two opposing factors,pectin methylesterase(PME)and pectin methylesterase inhibitor(PMEI),which collectively regulate patterns of pectin methylesterification.Despite the recognized importance of pectin methylesterification in seed germination,the specific mechanisms that govern this process remain unclear.In this study,we demonstrated that the overexpression of GhPMEI53is associated with a decrease in PME activity and an increase in pectin methylesterification.This leads to seed cell wall softening,which positively regulates cotton seed germination.AtPMEI19,the homologue in Arabidopsis thaliana,plays a similar role in seed germination to GhPMEI53,indicating a conserved function and mechanism of PMEI in seed germination regulation.Further studies revealed that GhPMEI53 and AtPMEI19 directly contribute to promoting radicle protrusion and seed germination by inducing cell wall softening and reducing mechanical strength.Additionally,the pathways of abscicic acid(ABA)and gibberellin(GA)in the transgenic materials showed significant changes,suggesting that GhPMEI53/AtPMEI19-mediated pectin methylesterification serves as a regulatory signal for the related phytohormones involved in seed germination.In summary,GhPMEI53 and its homologs alter the mechanical properties of cell walls,which influence the mechanical resistance of the endosperm or testa.Moreover,they impact cellular phytohormone pathways(e.g.,ABA and GA)to regulate seed germination.These findings enhance our understanding of pectin methylesterification in cellular morphological dynamics and signaling transduction,and contribute to a more comprehensive understanding of the PME/PMEI gene superfamily in plants.
基金supported by the National Key Research and Development Plan(Grant No.2022YFC2905700)Natural Science Foundation of Anhui Province(Grant No.2208085ME120)Key Research and Development Plan of Anhui Province(Grant No.2022m07020001).
文摘The influence of thermal damage on macroscopic and microscopic characteristics of different rocks has received much attention in the field of rock engineering.When the rocks are subjected to thermal treatment,the change of macroscopic characteristics and evolution of micro-structure would be induced,ultimately resulting in different degrees of thermal damage in rocks.To better understand the thermal damage mechanism of different rocks and its effect on the rock performance,this study reviews a large number of test results of rock specimens experiencing heating and cooling treatment in the laboratory.Firstly,the variations of macroscopic behaviors,including physical parameters,mechanical parameters,thermal conductivity and permeability,are examined.The variations of mechanical parameters with thermal treatment variables(i.e.temperature or the number of thermal cycles)are divided into four types.Secondly,several measuring methods for microstructure,such as polarizing microscopy,fluorescent method,scanning electron microscopy(SEM),X-ray computerized tomography(CT),acoustic emission(AE)and ultrasonic technique,are introduced.Furthermore,the effect of thermal damage on the mechanical parameters of rocks in response to different thermal treatments,involving temperature magnitude,cooling method and thermal cycle,are discussed.Finally,the limitations and prospects for the research of rock thermal damage are proposed.
基金supported in part by the Fund of National Sensor Network Engineering Technology Research Center(No.NSNC202103)the Natural Science Research Project in Colleges and Universities of Anhui Province(No.2022AH040155)the Undergraduate Teaching Quality and Teaching Reform Engineering Project of Chuzhou University(No.2022ldtd03).
文摘In this paper,a feature interactive bi-temporal change detection network(FIBTNet)is designed to solve the problem of pseudo change in remote sensing image building change detection.The network improves the accuracy of change detection through bi-temporal feature interaction.FIBTNet designs a bi-temporal feature exchange architecture(EXA)and a bi-temporal difference extraction architecture(DFA).EXA improves the feature exchange ability of the model encoding process through multiple space,channel or hybrid feature exchange methods,while DFA uses the change residual(CR)module to improve the ability of the model decoding process to extract different features at multiple scales.Additionally,at the junction of encoder and decoder,channel exchange is combined with the CR module to achieve an adaptive channel exchange,which further improves the decision-making performance of model feature fusion.Experimental results on the LEVIR-CD and S2Looking datasets demonstrate that iCDNet achieves superior F1 scores,Intersection over Union(IoU),and Recall compared to mainstream building change detectionmodels,confirming its effectiveness and superiority in the field of remote sensing image change detection.
基金supported by the Study on Astronomical Stratigraphic Period of Lacustrine Shale and High Resolution Sedimentary Cycle in Logging(41872166)of the National Natural Science Foundation of China and the Exploration and Development Research Institute,Shengli Oilfield Company,SINOPEC.
文摘Fine-grained lacustrine sedimentation controlled by astronomical cycles remains a research weakness in sedimentology studies,as most studies have concentrated on how astronomical cycles affect the normal lacustrine fine-grained sedimentation,but how they affect the lacustrine fine-grained event sedimen-tation has been rarely studied.Therefore,this work researched the characteristics of event sedimentation by systematically observing the cores from 30 cored wells in the Shahejie Formation of the Dongying Sag at a depth of over 1800 m,with more than 4000 thin sections being authenticated and over 1000 whole rocks being analyzed by X-ray diffraction(XRD).The research object was the Chunshang Sub-member of Upper Es_(4) in the Fanye 1 well,as it had the most comprehensive analysis data and underwent the most continuous coring.We divided astronomical cycles into different orders and made corresponding curves using the gamma-ray(GR)curve,spectral analysis,power spectrum estimation,and module extreme values,there were 6 long eccentricity periods,22 short eccentricity periods,65.5 obliquity cycles,and 110.5 precession cycles in this sub-member.On this basis,this study analyzed the control of astronomical cycles on the lacustrine fine-grained event sedimentation,and the research shows deposits were developed by slide-slump,turbidities,hyperpycnites,and tempestites in the Chunshang Sub-member of the Upper Es_(4),with higher long eccentricity,the monsoon climate contributes to the formation of storm currents,while with lower long eccentricity,the surface deposits are severely eroded by rivers and rainfalls,thus developing the slide-slump,turbidities,and hyperpycnites.The relationship between the lacustrine fine-grained event sedimentation and astronomical cycles was studied in this case study,which can promote research on fine-grained sedimentary rocks in genetic dynamics and boost the theoretical and disciplinary development in fine-grained sedimentology.
基金jointly supported by the National Key Research and Development Program of China (2021YFC3101500)the National Natural Science Foundation of China (Grant Nos. 41830964, 42275062)
文摘The accurate forecasting of tropical cyclones(TCs)is a challenging task.The purpose of this study was to investigate the effects of a dry-mass conserving(DMC)hydrostatic global spectral dynamical core on TC simulation.Experiments were conducted with DMC and total(moist)mass conserving(TMC)dynamical cores.The TC forecast performance was first evaluated considering 20 TCs in the West Pacific region observed during the 2020 typhoon season.The impacts of the DMC dynamical core on forecasts of individual TCs were then estimated.The DMC dynamical core improved both the track and intensity forecasts,and the TC intensity forecast improvement was much greater than the TC track forecast improvement.Sensitivity simulations indicated that the DMC dynamical core-simulated TC intensity was stronger regardless of the forecast lead time.In the DMC dynamical core experiments,three-dimensional winds and warm and moist cores were consistently enhanced with the TC intensity.Drier air in the boundary inflow layer was found in the DMC dynamical core experiments at the early simulation times.Water vapor mixing ratio budget analysis indicated that this mainly depended on the simulated vertical velocity.Higher updraft above the boundary layer yielded a drier boundary layer,resulting in surface latent heat flux(SLHF)enhancement,the major energy source of TC intensification.The higher DMC dynamical core-simulated updraft in the inner core caused a higher net surface rain rate,producing higher net internal atmospheric diabatic heating and increasing the TC intensity.These results indicate that the stronger DMC dynamical coresimulated TCs are mainly related to the higher DMC vertical velocity.
基金Supported by High level Talents Project of Hainan Provincial Natural Science Foundation of China(2019RC278)The Earmarked Fund for CARS(CARS-31)。
文摘[Objectives]The paper was to study molecular characterization,morphology and pathogenicity of Curvularia pseudobrachyspora,a new causal agent of leaf spot on banana.[Methods]Banana(Musa acuminate)leaves with streaks or long ellipse-shaped lesions were sampled in an orchard of Danzhou City,Hainan Province,China in 2021.Fungus isolates were isolated from the diseased tissues and further identified as C.pseudobrachyspora based on morphological characteristics of colony,conidiophore and spore,phylogenetic analyses of the ITS region,GAPDH and TEF-1αgenes.[Results]In the pathogenicity test,the fungus re-isolated from inoculated leaves with necrotic lesions was identified morphologically and molecularly,fulfilling Koch's postulates.[Conclusions]C.pseudobrachyspora is a new pathogen causing leaf spot of banana in China and the world.
基金Supported by China Agriculture Research System(CARS-31).
文摘[Objectives]The paper was to identify Alternaria alternata causing leaf spot disease on Huangdi banana in China.[Methods]Fungal isolates were isolated and identified by morphological features,molecular identification and pathogenicity test.[Results]There were light to dark brown,tiny oval spots on leaves.The causal agent isolated from affected leaves was identified as A.alternata based on the morphological properties,coupled with sequence analyses of the internal transcribed spacer(ITS)region,large subunit ribosomal DNA(LSU rDNA)and the translation elongation factor 1-alpha(TEF-1α)gene.Koch s postulates were fulfilled by successful re-isolation of pathogen from the artificial inoculated leaves.[Conclusions]To our knowledge,this is the first report of leaf spot caused by A.alternata on Huangdi banana in China.The identification of A.alternata as the causal agent of the observed leaf spot disease on Huangdi banana is critical to the prevention and control of this disease in the future.
基金This study was supported by the following grants:National Natural Science Foundation of China General Program funded projects(30772824,81574031)Hunan Provincial Key Laboratory Construction Project for Traditional Chinese Medicine Prevention and Treatment of Ophthalmic Diseases(2017TP1018)+3 种基金Key Discipline Construction Project of Traditional Chinese Medicine Ophthalmology from State Administration of Traditional Chinese Medicine(ZK 1801YK015)Changsha Science and Technology Plan Projects(K1501014-31,KC1704005)Hunan Provincial Graduate Research and Innovation Projects(CX20220780)Research Innovation Projects for Graduate Students at Hunan University of Chinese Medicine(2022YF01).
文摘Background:Dry eye is a chronic inflammatory disease of the ocular surface that is caused by multiple factors,characterized by pain,visual disturbance,and ocular damage.It is a common ophthalmic disease worldwide and a hot research field for scholars both domestically and internationally.This article employs network pharmacology methods to analyze the mechanism of Chrysanthemum in treating dry eye,which is a promising approach.Methods:The TCMSP(http://tcmspw.com/tcmsp.php)was used to screen for candidate active ingredient molecules of chrysanthemum with oral bioavailability≥30%and drug similarity to chrysanthemum≥0.18 as parameters.The active ingredients of chrysanthemum were searched using the“Related Targets”column in the TCMSP,followed by target prediction.Subsequently,Cytoscape 3.6.0 was employed to construct a compound-target network for chrysanthemum.The Online Mendelian Inheritance in Man and DisGeNET databases were used to identify pathogenic genes associated with dry eye.Furthermore,the STRING database was used to construct an interaction network and bar graph of intersecting target proteins in chrysanthemum to analyze protein interactions and core targets.To obtain key targets of active ingredients of chrysanthemum for treating dry eye,active ingredients targets of chrysanthemum and dry eye targets were intersected using Venny.Finally,a drug-active ingredient-key target-disease network was constructed.Gene Ontology functional annotation of key targets was performed using the WEBGESTALT database,and Kyoto Encyclopedia of Genes and Genomes pathway enrichment was performed using the REACTOM database.Results:Eighty active ingredients of chrysanthemum corresponding to targets were obtained.Among active ingredients,508 predicted targets were identified,along with 4180 genes associated with dry eye and 45 key targets of chrysanthemum for treating dry eye.The functions of key targets primarily include regulation of gene expression,oxidative stress,immune response,apoptosis,proliferation,regulation of cellular inflammation-related factors,and angiogenesis.The primary pathways associated with key targets include interleukin signaling,metabolism,cytokine signaling in the immune system,immune system,and signal transduction.Conclusion:Chrysanthemum facilitates regulation through multiple molecules,targets,and pathways for treating dry eye,primarily inhibiting inflammation-related factors and pathways,thereby reducing inflammation of lacrimal gland tissue and improving dry eye.