With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integr...In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integrated array effectively addresses the challenge of arranging a large number of ports in a full-digital array by designing vertical connections in a three-dimensional space and successfully integrating full-digital transmitting(Tx)and receiving(Rx)arrays independently in a single board.Unlike the traditional symmetric array,the proposed asymmetric array is composed of an 8×8 Tx array arranged in a square shape and an 8+8 Rx array arranged in an L shape.The center-to-center distance between two adjacent elements is 0.54k0 for both the Tx and Rx arrays,where k0 is the free-space wavelength at 27 GHz.The proposed AFDBF array possesses a more compact structure and lower system hardware cost and power consumption compared with conventional brick-type full-digital arrays.In addition,the energy efficiency of the proposed AFDBF array outperforms that of a hybrid beamforming array.The measurement results indicate that the operating frequency band of the proposed array is 24.25–29.50 GHz.An eight-element linear array within the Tx array can achieve a scanning angle ranging from-47°to+47°in both the azimuth and the elevation planes,and the measured scanning range of each eight-element Rx array is–45°to+45°.The measured maximum effective isotropic radiated power(EIRP)of the eight-element Tx array is 43.2 dBm at 28.0 GHz(considering the saturation point).Furthermore,the measured error vector magnitude(EVM)is less than 3%when 64-quadrature amplitude modulation(QAM)waveforms are used.展开更多
The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics ...The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.展开更多
An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear ar...An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.展开更多
Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mo...Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data.展开更多
Silicon monoxide(SiO)(silicon[Si]mixed with silicon dioxide[SiO_(2)])/graphite(Gr)composite material is one of the most commercially promising anode materials for the next generation of high-energy-density lithium-ion...Silicon monoxide(SiO)(silicon[Si]mixed with silicon dioxide[SiO_(2)])/graphite(Gr)composite material is one of the most commercially promising anode materials for the next generation of high-energy-density lithium-ion batteries.The major bottleneck for SiO/Gr composite anode is the poor cyclability arising from the stress/strain behaviors due to the mismatch between two heterogenous materials during the lithiation/delithiation process.To date,a meticulous and quantitative understanding of the highly nonlinear coupling behaviors of such materials is still lacking.Herein,an electro–chemo–mechanics-coupled detailed model containing particle geometries is established.The underlying mechanism of the regulation between SiO and Gr components during electrochemical cycling is quantitatively revealed.We discover that increasing the SiO weight percentage(wt%)reduces the utilization efficiency of the active materials at the same 1C rate charging and enhances the hindering effects of stress-driven flux on diffusion.In addition,the mechanical constraint demonstrates a balanced effect on the overall performance of cells and the local behaviors of particles.This study provides new insights into the fundamental interactions between SiO and Gr materials and advances the investigation methodology for the design and evaluation of next-generation high-energydensity batteries.展开更多
BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysm...BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysmogram(POP)parameters can be used to identify unsustained ROSC.METHODS:We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014.Patients’general information,ETCO_(2),and POP parameters were collected and statistically analyzed.RESULTS:The included 105 ROSC episodes(from 80 cardiac arrest patients)comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes.The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group(29.2%vs.9.4%,P<0.05).The logistic regression analysis showed that the difference between after and before ROSC in ETCO_(2)(ΔETCO_(2))and the difference between after and before ROCS in area under the curve of POP(ΔAUCp)were independently associated with sustained ROSC(odds ratio[OR]=0.931,95%confi dence interval[95%CI]0.881-0.984,P=0.011 and OR=0.998,95%CI 0.997-0.999,P<0.001).The area under the receiver operating characteristic curve ofΔETCO_(2),ΔAUCp,and the combination of both to predict unsustained ROSC were 0.752(95%CI 0.660-0.844),0.883(95%CI 0.818-0.948),and 0.902(95%CI 0.842-0.962),respectively.CONCLUSION:Patients with unsustained ROSC have a poor prognosis.The combination ofΔETCO_(2) andΔAUCp showed signifi cant predictive value for unsustained ROSC.展开更多
To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and ...To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.展开更多
Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stab...Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.展开更多
The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volu...The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers.展开更多
Trans-anal barotrauma resulting from the use of air guns is rare in the emergency department.Early diagnosis and timely treatment can yield a good prognosis.The first published case of trans-anal barotrauma caused by ...Trans-anal barotrauma resulting from the use of air guns is rare in the emergency department.Early diagnosis and timely treatment can yield a good prognosis.The first published case of trans-anal barotrauma caused by a manually operated force pump was reported in 1904.[1]Colorectal injuries have the potential to progress to high-mortality complications,such as abdominal infection,peritonitis,and septic shock.[2,3]Herein,we report a case of trans-anal barotrauma in a man who presented with pneumoperitoneum,pneumomediastinum,and pneumoscrotum.We performed laparoscopic exploration and loop ileostomy on this patient.展开更多
Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviat...Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.展开更多
BACKGROUND Bariatric and metabolic surgery have been routinely performed following the rapid increase in obesity and metabolic diseases worldwide.Of all evolving procedures,Roux-en-Y gastric bypass(RYGB)is considered ...BACKGROUND Bariatric and metabolic surgery have been routinely performed following the rapid increase in obesity and metabolic diseases worldwide.Of all evolving procedures,Roux-en-Y gastric bypass(RYGB)is considered the gold standard for surgical treatment of patients with type 2 diabetes mellitus(T2DM)and obesity.RYGB was introduced in China nearly 20 years ago,but the number of RYGB surgeries only accounts for 3.1%of the total number of weight loss and metabolic surgeries in China,it’s effect on Chinese people still needs further study.AIM To investigate the effect and safety of a modified gastric bypass performed in Chinese patients with T2DM.METHODS Patients with obesity and T2DM who underwent modified gastric bypass,with>5-year follow-up data,were analyzed.RESULTS All 37 patients underwent uneventful laparoscopic surgery,no patient was switched to laparotomy during the surgery,and no severe complications were reported.Average weight and body mass index of the patients reduced from 84.6±17.3(60.0–140.0)kg and 30.9±5.0(24.7–46.2)kg/m2 to 67.1±12.2(24.7–46.2)kg and 24.6±3.9(17.7–36.5)kg/m2,respectively,and fasting plasma glucose and glycated hemoglobin decreased from 7.4±3.4 mmol/L and 8.2%±1.7%preoperatively to 6.5±1.3 mmol/L and 6.5%±0.9%5-years postoperatively,respectively.Only 29.7%(11/37)of the patients used hypoglycemic drugs 5-years postoperatively,and the complete remission rate of T2DM was 29.7%(11/37).Triglyceride level reduced significantly but high-density lipoprotein increased significantly(both P<0.05)compared with those during the preoperative period.Liver and renal function improved significantly postoperatively,and binary logistic regression analysis revealed that the patients’preoperative history of T2DM and fasting C-peptide were significant prognostic factors influencing complete T2DM remission after RYGB(P=0.006 and 0.012,respectively).CONCLUSION The modified gastric bypass is a safe and feasible procedure for Chinese patients with obesity and T2DM,exhibiting satisfactory amelioration of weight problems,hyperglycemia,and combination disease.展开更多
Background:Curcumin is a plant polyphenol with antitumor properties and inhibits the development of colorectal cancer(CRC).However,as the molecular mechanism associated is still unclear,our study aimed to explore the ...Background:Curcumin is a plant polyphenol with antitumor properties and inhibits the development of colorectal cancer(CRC).However,as the molecular mechanism associated is still unclear,our study aimed to explore the underlying molecular mechanisms by which curcumin inhibits CRC.Methods:HT29 and SW480 cells were treated with curcumin or/and Doxycycline(DOX),and cell viability,colony forming ability,migration and invasion were confirmed by cell counting kit-8(CCK-8),colony forming,Transwell assays.And Yes-associated protein 1(YAP)and PDZ-binding motif(TAZ)signaling-related genes or proteins were analyzed using reverse transcription quantitative real-time PCR(RT-qPCR),western blot,and immunofluorescence assays.Then nude mice xenograft tumor model was constructed,YAP and Ki67 expressions were tested by immunohistochemistry(IHC)staining.Results:In our study,we proved that curcumin significantly inhibited the CRC cell viability,cell migration,and cell invasion abilities.In addition,curcumin inhibited YAP and Transcriptional coactivator with TAZ or the YAP/TAZ signaling axis in CRC cells.Further,in the nude mice model,curcumin treatment significantly decreased the size and weight of xenotransplant tumors.Conclusion:Therefore,curcumin significantly inhibited CRC development and invasion by regulating the YAP/TAZ signaling axis.展开更多
BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the ...BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions.展开更多
AIM To evaluate the feasibility of side-to-side anastomosis of the lesser curvature of stomach and jejunum in laparoscopic Roux-en-Y gastric bypass(LRYGB).METHODS Seventy-seven patients received side-to-side anastomos...AIM To evaluate the feasibility of side-to-side anastomosis of the lesser curvature of stomach and jejunum in laparoscopic Roux-en-Y gastric bypass(LRYGB).METHODS Seventy-seven patients received side-to-side anastomosis of the lesser curvature of stomach and jejunum by utilization of linear stapler in LRYGB from April 2012 to July 2015 were retrospectively analyzed.RESULTS All patients were successfully completed laparoscopic gastric bypass with the side-to-side anastomosis of the lesser curvature of stomach and jejunum. No patient was switched to laparotomy during operation. No early complications including gastrointestinal anastomotic bleeding, fistula, obstruction, deep vein thrombosis, incision infections, intra-abdominal hernia complications were found. One patient complicated with stricture of gastrojejunal anastomosis(1.3%) and six patients complicated with incomplete intestinal obstruction(7.8%). BMI and Hb A1 c determined at 3, 6, 12, 24 mo during follow up period were significantly reduced compared with preoperative baselines respectively. The percentage of patients who maintain HbA 1c(%) < 6.5% without taking antidiabetic drugs reached to 61.0%, 63.6%, 75.0%, and 63.6% respectively. The outcome parameters of concomitant diseases were significantly improved too.CONCLUSION Present surgery is a safety and feasibility procedure. It is effective to lighten the body weight of patients and improve type 2 diabetes and related complications.展开更多
As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion ...As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films.We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range,the junctions behave like superconductor–normal conductor–superconductor junctions.The measurements of the I–V characteristics,Fraunhofer diffraction pattern,and Shapiro steps of the junctions clearly show AC and DC Josephson effects.Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.展开更多
Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a r...Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。展开更多
A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage ...A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage current that is three orders of magnitude lower, and steeper subthreshold characteristics, without degradation in the on-state current. We reveal that these improvements are due to the induced local potential barrier, which arises from the energy-band profile modulation effect. Based on this novel structure, the impacts of the physical parameters of the gap region between the pocket and the drain, including the work-function mismatch between the pocket gate and the gap gate, the type of dopant, and the doping concentration, on the device performance are investigated. Simulation and theoretical calculation results indicate that the gap gate material and n-type doping level in the gap region should be optimized simultaneously to make this region fully depleted for further suppression of the off-state leakage current.展开更多
Continuous renal replacement therapy(CRRT)is widely used for treating critically-ill patients in the emergency department in China.Anticoagulant therapy is needed to prevent clotting in the extracorporeal circulation ...Continuous renal replacement therapy(CRRT)is widely used for treating critically-ill patients in the emergency department in China.Anticoagulant therapy is needed to prevent clotting in the extracorporeal circulation during CRRT.Regional citrate anticoagulation(RCA)has been shown to potentially be safer and more effective,and is now recommended as the preferred anticoagulant method for CRRT.However,there is still a lack of unified standards for RCA management in the world,and there are many problems in using this method in clinical practice.The Emergency Medical Doctor Branch of the Chinese Medical Doctor Association(CMDA)organized a panel of domestic emergency medicine experts and international experts of CRRT to discuss RCA-related issues,including the advantages and disadvantages of RCA in CRRT anticoagulation,the principle of RCA,parameter settings for RCA,monitoring of RCA(mainly metabolic acid-base disorders),and special issues during RCA.Based on the latest available research evidence as well as the paneled experts'clinical experience,considering the generalizability,suitability,and potential resource utilization,while also balancing clinical advantages and disadvantages,a total of 16 guideline recommendations were formed from the experts'consensus.展开更多
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金supported by the National Key Research and Development Program of China(2020YFB1804900 and 2022YFE0210900)the Fundamental Research Funds for the Central Universities(2242022k60008 and 2242022k30003)+2 种基金the National Natural Science Foundation of China(62301152 and 61627801)the Youth Talent Promotion Foundation of Jiangsu Science and Technology Association(TJ-2023-074)the Startup Research Fund of Southeast University(RF1028623286).
文摘In this article,a single-board integrated millimeter-wave(mm-Wave)asymmetric full-digital beamforming(AFDBF)array is developed for beyond-fifth-generation(B5G)and sixth-generation(6G)communications.The proposed integrated array effectively addresses the challenge of arranging a large number of ports in a full-digital array by designing vertical connections in a three-dimensional space and successfully integrating full-digital transmitting(Tx)and receiving(Rx)arrays independently in a single board.Unlike the traditional symmetric array,the proposed asymmetric array is composed of an 8×8 Tx array arranged in a square shape and an 8+8 Rx array arranged in an L shape.The center-to-center distance between two adjacent elements is 0.54k0 for both the Tx and Rx arrays,where k0 is the free-space wavelength at 27 GHz.The proposed AFDBF array possesses a more compact structure and lower system hardware cost and power consumption compared with conventional brick-type full-digital arrays.In addition,the energy efficiency of the proposed AFDBF array outperforms that of a hybrid beamforming array.The measurement results indicate that the operating frequency band of the proposed array is 24.25–29.50 GHz.An eight-element linear array within the Tx array can achieve a scanning angle ranging from-47°to+47°in both the azimuth and the elevation planes,and the measured scanning range of each eight-element Rx array is–45°to+45°.The measured maximum effective isotropic radiated power(EIRP)of the eight-element Tx array is 43.2 dBm at 28.0 GHz(considering the saturation point).Furthermore,the measured error vector magnitude(EVM)is less than 3%when 64-quadrature amplitude modulation(QAM)waveforms are used.
基金supported by the National Natural Science Foundation of China(Nos.52204092 and 52274203).
文摘The damage evolution process of non-penetrating cracks often causes some unexpected engineering disasters.Gypsum specimens containing non-penetrating crack(s)are used to study the damage evolution and characteristics under cyclic loading.The results show that under cyclic loading,the relationship between the number of non-penetrating crack(s)and the characteristic parameters(cyclic number,peak stress,peak strain,failure stress,and failure strain)of the pre-cracked specimens can be represented by a decreasing linear function.The damage evolution equation is fitted by calibrating the accumulative plastic strain for each cycle,and the damage constitutive equation is proposed by the concept of effective stress.Additionally,non-penetrating cracks are more likely to cause uneven stress distribution,damage accumulation,and local failure of specimen.The local failure can change the stress distribution and relieve the inhibition of non-penetrating crack extension and eventually cause a dramatic destruction of the specimen.Therefore,the evolution process caused by non-penetrating cracks can be regarded as one of the important reasons for inducing rockburst.These results are expected to improve the understanding of the process of spalling formation and rockburst and can be used to analyze the stability of rocks or rock structures.
基金support of National Natural Science Foundation of P.R.China(22308104).
文摘An efficient utilization strategy of ethylene tar(ET),the main by-product of the ethylene cracking unit,is urgently required to meet demands for modern petrochemical industry.On the other hand,condensed polynuclear aromatic resin of moderate condensation degree(B-COPNA)is a widely used carbon material due to its superb processability,the production of which is,however,seriously limited by the high cost of raw materials.Under such context,an interesting strategy was proposed in this study for producing B-COPNA resin using crosslinked light fractions of ethylene tar(ETLF,boiling point<260℃)facilitated by molecular simulation.1,4-Benzenedimethanol(PXG)was first selected as the crosslinking agent according to the findings of molecular simulation.The effects of operating conditions,including reactions temperature,crosslinking agent,and catalyst content on the softening point and yield of B-COPNA resin products were then investigated to optimize the process.The reaction mechanism of resin production was studied by analyzing the molecular structure and transition state of ETLF and crosslinking agents.It was shown that PXG exhibited a superior capacity of withdrawing electrons and a higher electrophilic reactivity than other crosslinking agents.In addition to the highest yield and greatest heat properties,PXG-prepared resin contained the most condensed aromatics.The corresponding optimized conditions of resin preparation were 180℃,1:1.9(PXG:ETLF),and 3%(mass)of catalyst content with a resin yield of 78.57%.It was the electrophilic substitution reaction that occurred between the ETLF and crosslinking agent molecules that were responsible for the resin formation,according to the experimental characterization and molecular simulation.Hence,it was confirmed that the proposed strategy and demonstrated process can achieve a clean and high value-added utilization of ETLF via B-COPNA resin preparation,bringing huge economic value to the current petrochemical industry.
基金supported by the National Natural Science Foundation of China(No.42174090 and No.42250103)the MOST Special Fund from the State Key Laboratory of Geological Processes and Mineral Resources(No.MSFGPMR2022-4)+1 种基金the Opening Fund of Key Laboratory of Geological Survey and Evaluation of Ministry of Education(No.GLAB2023ZR02)the Fundamental Research Funds for the Central Universities。
文摘Due to environmental noise and human factors,magnetic data collected in the field often contain various noises and interferences that significantly affect the subsequent data processing and interpretation.Empirical Mode Decomposition(EMD),an adaptive multiscale analysis method for nonlinear and non-stationary signals,is widely used in geophysical and geodetic data processing.Compared with traditional EMD,Improved Complete Ensemble EMD with Adaptive Noise(ICEEMDAN)is more effective in addressing the problem of mode mixing.Based on the principles of 1D ICEEMDAN,this paper presents an alternative algorithm for 2D ICEEMDAN,extending its application to two-dimensional scenarios.The effectiveness of the proposed approach is demonstrated through synthetic signal experiments,which show that the 2D ICEEMDAN exhibits a weaker mode mixing effect compared to the traditional bidimensional EMD(BEMD)method.Furthermore,to improve the performance of the denoising method based on 2D ICEEMDAN and preserve useful signals in high-frequency components,an improved soft thresholding technique is introduced.Synthetic magnetic anomaly data testing indicates that our denoising method effectively preserves signal continuity and outperforms traditional soft thresholding methods.To validate the practical application of this improved threshold denoising method based on 2D ICEEMDAN,it is applied to ground magnetic survey data in the Yandun area of Xinjiang.The results demonstrate the effectiveness of the method in removing noise while retaining essential information from practical magnetic anomaly data.In particular,practical applications suggest that 2D ICEEMDAN can extract trend signals more accurately than the BEMD.In conclusion,as a potential tool for multi-scale decomposition,the 2D ICEEMDAN is versatile in processing and analyzing 2D geophysical and geodetic data.
文摘Silicon monoxide(SiO)(silicon[Si]mixed with silicon dioxide[SiO_(2)])/graphite(Gr)composite material is one of the most commercially promising anode materials for the next generation of high-energy-density lithium-ion batteries.The major bottleneck for SiO/Gr composite anode is the poor cyclability arising from the stress/strain behaviors due to the mismatch between two heterogenous materials during the lithiation/delithiation process.To date,a meticulous and quantitative understanding of the highly nonlinear coupling behaviors of such materials is still lacking.Herein,an electro–chemo–mechanics-coupled detailed model containing particle geometries is established.The underlying mechanism of the regulation between SiO and Gr components during electrochemical cycling is quantitatively revealed.We discover that increasing the SiO weight percentage(wt%)reduces the utilization efficiency of the active materials at the same 1C rate charging and enhances the hindering effects of stress-driven flux on diffusion.In addition,the mechanical constraint demonstrates a balanced effect on the overall performance of cells and the local behaviors of particles.This study provides new insights into the fundamental interactions between SiO and Gr materials and advances the investigation methodology for the design and evaluation of next-generation high-energydensity batteries.
基金supported by National Natural Science Foundation of China General Program (82172179)Mathematics Tianyuan Fund (12126604)Central High-level Hospital Clinical Research Project (2022-PUMCH-B-110)
文摘BACKGROUND:Unsustained return of spontaneous circulation(ROSC)is a critical barrier to survival in cardiac arrest patients.This study examined whether end-tidal carbon dioxide(ETCO_(2))and pulse oximetry photoplethysmogram(POP)parameters can be used to identify unsustained ROSC.METHODS:We conducted a multicenter observational prospective cohort study of consecutive patients with cardiac arrest from 2013 to 2014.Patients’general information,ETCO_(2),and POP parameters were collected and statistically analyzed.RESULTS:The included 105 ROSC episodes(from 80 cardiac arrest patients)comprised 51 sustained ROSC episodes and 54 unsustained ROSC episodes.The 24-hour survival rate was significantly higher in the sustained ROSC group than in the unsustained ROSC group(29.2%vs.9.4%,P<0.05).The logistic regression analysis showed that the difference between after and before ROSC in ETCO_(2)(ΔETCO_(2))and the difference between after and before ROCS in area under the curve of POP(ΔAUCp)were independently associated with sustained ROSC(odds ratio[OR]=0.931,95%confi dence interval[95%CI]0.881-0.984,P=0.011 and OR=0.998,95%CI 0.997-0.999,P<0.001).The area under the receiver operating characteristic curve ofΔETCO_(2),ΔAUCp,and the combination of both to predict unsustained ROSC were 0.752(95%CI 0.660-0.844),0.883(95%CI 0.818-0.948),and 0.902(95%CI 0.842-0.962),respectively.CONCLUSION:Patients with unsustained ROSC have a poor prognosis.The combination ofΔETCO_(2) andΔAUCp showed signifi cant predictive value for unsustained ROSC.
基金Project supported by the National Key R&D Program of China (Grant No. 2019YFA0708202)the National Natural Science Foundation of China (Grant Nos. 11974023, 52021006, 61974139, 12074369, and 12104017)+1 种基金the “2011 Program” from the Peking–Tsinghua–IOP Collaborative Innovation Center of Quantum Matterthe Youth Supporting Program of Institute of Semiconductors
文摘To gain further understanding of the luminescence properties of multiquantum wells and the factors affecting them on a microscopic level,cathodoluminescence combined with scanning transmission electron microscopy and spectroscopy was used to measure the luminescence of In_(0.15)Ga_(0.85)N five-period multiquantum wells.The lattice-composition-energy relationship was established with the help of energy-dispersive x-ray spectroscopy,and the bandgaps of In_(0.15)Ga_(0.85)N and GaN in multiple quantum wells were extracted by electron energy loss spectroscopy to understand the features of cathodoluminescence spectra.The luminescence differences between different periods of multiquantum wells and the effects of defects such as composition fluctuation and dislocations on the luminescence of multiple quantum wells were revealed.Our study establishing the direct relationship between the atomic structure of In_(x)Ga_(1-x)N multiquantum wells and photoelectric properties provides useful information for nitride applications.
基金supported in part by the National Natural Science Foundation of China(Grant No.62104056)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ21F010010)+4 种基金the National Natural Science Foundation of China(Grant Nos.62141409 and 62204204)the National Key R&D Program of China(Grant No.2022ZD0208602)the Zhejiang Provincial Key Research&Development Fund(Grant Nos.2019C04003 and 2021C01041)the Shanghai Sailing Program(Grant No.21YF1451000)the Key Research and Development Program of Shaanxi(Grant No.2022GY-001).
文摘Flexible pressure sensors have many potential applications in the monitoring of physiological signals because of their good biocompatibil-ity and wearability.However,their relatively low sensitivity,linearity,and stability have hindered their large-scale commercial application.Herein,aflexible capacitive pressure sensor based on an interdigital electrode structure with two porous microneedle arrays(MNAs)is pro-posed.The porous substrate that constitutes the MNA is a mixed product of polydimethylsiloxane and NaHCO3.Due to its porous and interdigital structure,the maximum sensitivity(0.07 kPa-1)of a porous MNA-based pressure sensor was found to be seven times higher than that of an imporous MNA pressure sensor,and it was much greater than that of aflat pressure sensor without a porous MNA structure.Finite-element analysis showed that the interdigital MNA structure can greatly increase the strain and improve the sensitivity of the sen-sor.In addition,the porous MNA-based pressure sensor was found to have good stability over 1500 loading cycles as a result of its bilayer parylene-enhanced conductive electrode structure.Most importantly,it was found that the sensor could accurately monitor the motion of afinger,wrist joint,arm,face,abdomen,eye,and Adam’s apple.Furthermore,preliminary semantic recognition was achieved by monitoring the movement of the Adam’s apple.Finally,multiple pressure sensors were integrated into a 33 array to detect a spatial pressure distribu-×tion.Compared to the sensors reported in previous works,the interdigital electrode structure presented in this work improves sensitivity and stability by modifying the electrode layer rather than the dielectric layer.
基金the National Natural Science Foundation of China(Grant Number 52078199)the China National Railway Group Limited(Grant Number P2021J036)+1 种基金the Hunan Young Talents Program(Grant Number 2020RC3019)the Young Elite Scientists Sponsorship Program by CAST(2020QNRC001).
文摘The spread and removal of pollution sources,namely,cough-released droplets in three different areas(front,middle,and rear areas)of a fully-loaded passenger car in a high-speed train under different fresh air flow volume were studied using computational fluid dynamics(CFD)method.In addition,the structure of indoor flow fields was also analysed.The results show that the large eddies are more stable and flow faster in the air supply under Mode 2(fresh air volume:2200m3/h)compared to Mode 1(fresh air volume:1100m3/h).By analysing the spreading process of droplets sprayed at different locations in the passenger car and with different particle sizes,the removal trends for droplets are found to be similar under the two air supply modes.However,when increasing the fresh air flow volume,the droplets in the middle and front areas of the passenger car are removed faster.When the droplets had dispersed for 60s,Mode 2 exhibited a removal rate approximately 1%–3%higher than Mode 1 for small and medium-sized droplets with diameters of 10 and 50μm.While those in the rear area,the situation is reversed,with Mode 1 slightly surpassing Mode 2 by 1%–3%.For large droplets with a diameter of 100μm,both modes achieved a removal rate of over 96%in all three regions at the 60 s.The results can provide guidance for air supply modes of passenger cars of high-speed trains,thus suppressing the spread of virus-carrying droplets and reducing the risk of viral infection among passengers.
基金supported by National High Level Hospital Clinical Research Funding(2022-PUMCH-B-110).
文摘Trans-anal barotrauma resulting from the use of air guns is rare in the emergency department.Early diagnosis and timely treatment can yield a good prognosis.The first published case of trans-anal barotrauma caused by a manually operated force pump was reported in 1904.[1]Colorectal injuries have the potential to progress to high-mortality complications,such as abdominal infection,peritonitis,and septic shock.[2,3]Herein,we report a case of trans-anal barotrauma in a man who presented with pneumoperitoneum,pneumomediastinum,and pneumoscrotum.We performed laparoscopic exploration and loop ileostomy on this patient.
基金sponsored by the National Natural Science Foundation of China(NSFC)under the grant numbers(11773073,11873027,U2031140,11833010)Yunnan Key Laboratory of Solar Physics and Space Science under the number 202205AG070009+1 种基金Yunnan Provincial Science and Technology Department(202103AD50013,202105AB160001,202305AH340002)the GHfund A202302013242 and CAS“Light of West China”Program 202305AS350029.
文摘Strong atmospheric turbulence reduces astronomical seeing,causing speckle images acquired by ground-based solar telescopes to become blurred and distorted.Severe distortion in speckle images impedes image phase deviation in the speckle masking reconstruction method,leading to the appearance of spurious imaging artifacts.Relying only on linear image degradation principles to reconstruct solar images is insufficient.To solve this problem,we propose the multiframe blind deconvolution combined with non-rigid alignment(MFBD-CNRA)method for solar image reconstruction.We consider image distortion caused by atmospheric turbulence and use non-rigid alignment to correct pixel-level distortion,thereby achieving nonlinear constraints to complement image intensity changes.After creating the corrected speckle image,we use the linear method to solve the wavefront phase,obtaining the target image.We verify the effectiveness of our method results,compared with others,using solar observation data from the 1 m new vacuum solar telescope(NVST).This new method successfully reconstructs high-resolution images of solar observations with a Fried parameter r0 of approximately 10 cm,and enhances images at high frequency.When r0 is approximately 5 cm,the new method is even more effective.It reconstructs the edges of solar graining and sunspots,and is greatly enhanced at mid and high frequency compared with other methods.Comparisons confirm the effectiveness of this method,with respect to both nonlinear and linear constraints in solar image reconstruction.This provides a suitable solution for image reconstruction in ground-based solar observations under strong atmospheric turbulence.
文摘BACKGROUND Bariatric and metabolic surgery have been routinely performed following the rapid increase in obesity and metabolic diseases worldwide.Of all evolving procedures,Roux-en-Y gastric bypass(RYGB)is considered the gold standard for surgical treatment of patients with type 2 diabetes mellitus(T2DM)and obesity.RYGB was introduced in China nearly 20 years ago,but the number of RYGB surgeries only accounts for 3.1%of the total number of weight loss and metabolic surgeries in China,it’s effect on Chinese people still needs further study.AIM To investigate the effect and safety of a modified gastric bypass performed in Chinese patients with T2DM.METHODS Patients with obesity and T2DM who underwent modified gastric bypass,with>5-year follow-up data,were analyzed.RESULTS All 37 patients underwent uneventful laparoscopic surgery,no patient was switched to laparotomy during the surgery,and no severe complications were reported.Average weight and body mass index of the patients reduced from 84.6±17.3(60.0–140.0)kg and 30.9±5.0(24.7–46.2)kg/m2 to 67.1±12.2(24.7–46.2)kg and 24.6±3.9(17.7–36.5)kg/m2,respectively,and fasting plasma glucose and glycated hemoglobin decreased from 7.4±3.4 mmol/L and 8.2%±1.7%preoperatively to 6.5±1.3 mmol/L and 6.5%±0.9%5-years postoperatively,respectively.Only 29.7%(11/37)of the patients used hypoglycemic drugs 5-years postoperatively,and the complete remission rate of T2DM was 29.7%(11/37).Triglyceride level reduced significantly but high-density lipoprotein increased significantly(both P<0.05)compared with those during the preoperative period.Liver and renal function improved significantly postoperatively,and binary logistic regression analysis revealed that the patients’preoperative history of T2DM and fasting C-peptide were significant prognostic factors influencing complete T2DM remission after RYGB(P=0.006 and 0.012,respectively).CONCLUSION The modified gastric bypass is a safe and feasible procedure for Chinese patients with obesity and T2DM,exhibiting satisfactory amelioration of weight problems,hyperglycemia,and combination disease.
基金This work was financially supported by the Second Batch of Medical and Health Science and Technology Plan(self-financing)Projects in Shantou in 2020,Shantou Science and Technology Bureau Document Shantou([2020]No.58).
文摘Background:Curcumin is a plant polyphenol with antitumor properties and inhibits the development of colorectal cancer(CRC).However,as the molecular mechanism associated is still unclear,our study aimed to explore the underlying molecular mechanisms by which curcumin inhibits CRC.Methods:HT29 and SW480 cells were treated with curcumin or/and Doxycycline(DOX),and cell viability,colony forming ability,migration and invasion were confirmed by cell counting kit-8(CCK-8),colony forming,Transwell assays.And Yes-associated protein 1(YAP)and PDZ-binding motif(TAZ)signaling-related genes or proteins were analyzed using reverse transcription quantitative real-time PCR(RT-qPCR),western blot,and immunofluorescence assays.Then nude mice xenograft tumor model was constructed,YAP and Ki67 expressions were tested by immunohistochemistry(IHC)staining.Results:In our study,we proved that curcumin significantly inhibited the CRC cell viability,cell migration,and cell invasion abilities.In addition,curcumin inhibited YAP and Transcriptional coactivator with TAZ or the YAP/TAZ signaling axis in CRC cells.Further,in the nude mice model,curcumin treatment significantly decreased the size and weight of xenotransplant tumors.Conclusion:Therefore,curcumin significantly inhibited CRC development and invasion by regulating the YAP/TAZ signaling axis.
文摘BACKGROUND Synchronous liver metastasis(SLM)is a significant contributor to morbidity in colorectal cancer(CRC).There are no effective predictive device integration algorithms to predict adverse SLM events during the diagnosis of CRC.AIM To explore the risk factors for SLM in CRC and construct a visual prediction model based on gray-level co-occurrence matrix(GLCM)features collected from magnetic resonance imaging(MRI).METHODS Our study retrospectively enrolled 392 patients with CRC from Yichang Central People’s Hospital from January 2015 to May 2023.Patients were randomly divided into a training and validation group(3:7).The clinical parameters and GLCM features extracted from MRI were included as candidate variables.The prediction model was constructed using a generalized linear regression model,random forest model(RFM),and artificial neural network model.Receiver operating characteristic curves and decision curves were used to evaluate the prediction model.RESULTS Among the 392 patients,48 had SLM(12.24%).We obtained fourteen GLCM imaging data for variable screening of SLM prediction models.Inverse difference,mean sum,sum entropy,sum variance,sum of squares,energy,and difference variance were listed as candidate variables,and the prediction efficiency(area under the curve)of the subsequent RFM in the training set and internal validation set was 0.917[95%confidence interval(95%CI):0.866-0.968]and 0.09(95%CI:0.858-0.960),respectively.CONCLUSION A predictive model combining GLCM image features with machine learning can predict SLM in CRC.This model can assist clinicians in making timely and personalized clinical decisions.
文摘AIM To evaluate the feasibility of side-to-side anastomosis of the lesser curvature of stomach and jejunum in laparoscopic Roux-en-Y gastric bypass(LRYGB).METHODS Seventy-seven patients received side-to-side anastomosis of the lesser curvature of stomach and jejunum by utilization of linear stapler in LRYGB from April 2012 to July 2015 were retrospectively analyzed.RESULTS All patients were successfully completed laparoscopic gastric bypass with the side-to-side anastomosis of the lesser curvature of stomach and jejunum. No patient was switched to laparotomy during operation. No early complications including gastrointestinal anastomotic bleeding, fistula, obstruction, deep vein thrombosis, incision infections, intra-abdominal hernia complications were found. One patient complicated with stricture of gastrojejunal anastomosis(1.3%) and six patients complicated with incomplete intestinal obstruction(7.8%). BMI and Hb A1 c determined at 3, 6, 12, 24 mo during follow up period were significantly reduced compared with preoperative baselines respectively. The percentage of patients who maintain HbA 1c(%) < 6.5% without taking antidiabetic drugs reached to 61.0%, 63.6%, 75.0%, and 63.6% respectively. The outcome parameters of concomitant diseases were significantly improved too.CONCLUSION Present surgery is a safety and feasibility procedure. It is effective to lighten the body weight of patients and improve type 2 diabetes and related complications.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0601901)the National Natural Science Foundation of China(Grant No.61571019)。
文摘As a newly developed method for fabricating Josephson junctions,a focused helium ion beam has the advantage of producing reliable and reproducible junctions.We fabricated Josephson junctions with a focused helium ion beam on our 50 nm YBa_(2)Cu_(3)O_(7-δ)(YBCO)thin films.We focused on the junction with irradiation doses ranging from 100 to 300 ions/nm and demonstrated that the junction barrier can be modulated by the ion dose and that within this dose range,the junctions behave like superconductor–normal conductor–superconductor junctions.The measurements of the I–V characteristics,Fraunhofer diffraction pattern,and Shapiro steps of the junctions clearly show AC and DC Josephson effects.Our findings demonstrate high reproducibility of junction fabrication using a focused helium ion beam and suggest that commercial devices based on this nanotechnology could operate at liquid nitrogen temperatures.
文摘Combining a progressive tandem junction design with a unique Si nanowire(SiNW)framework paves the way for the development of high‐onset‐potential photocathodes and enhancement of solar hydrogen production.Herein,a radial tandem junction(RTJ)thin film water‐splitting photo‐cathode has been demonstrated experimentally for the first time.The photocathode is directly fab‐ricated on vapor‐liquid‐solid‐grown SiNWs and consists of two radially stacked p‐i‐n junctions,featuring hydrogenated amorphous silicon(a‐Si:H)as the outer absorber layer,which absorbs short wavelengths,and hydrogenated amorphous silicon germanium(a‐SiGe:H)as the inner layer,which absorbs long wavelengths.The randomly distributed SiNW framework enables highly efficient light‐trapping,which facilitates the use of very thin absorber layers of a‐Si:H(~50 nm)and a‐SiGe:H(~40 nm).In a neutral electrolyte(pH=7),the three‐dimensional(3D)RTJ photocathode delivers a high photocurrent onset of 1.15 V vs.the reversible hydrogen electrode(RHE),accompanied by a photocurrent of 2.98 mA/cm^(2) at 0 V vs.RHE,and an overall applied‐bias photon‐to‐current effi‐ciency of 1.72%.These results emphasize the promising role of 3D radial tandem technology in developing a new generation of durable,low‐cost,high‐onset‐potential photocathodes capable of large‐scale implementation。
基金supported by the National Natural Science Foundation of China(Grant No.61306105)the National Science and Technology Major Project of China(Grant No.2011ZX02708-002)+1 种基金the Tsinghua University Initiative Scientific Research Programthe Tsinghua National Laboratory for Information Science and Technology(TNList)Cross-discipline Foundation of China
文摘A Si/Ge heterojunction line tunnel field-effect transistor (LTFET) with a symmetric heteromaterial gate is proposed. Compared to single-material-gate LTFETs, the heteromaterial gate LTFET shows an off-state leakage current that is three orders of magnitude lower, and steeper subthreshold characteristics, without degradation in the on-state current. We reveal that these improvements are due to the induced local potential barrier, which arises from the energy-band profile modulation effect. Based on this novel structure, the impacts of the physical parameters of the gap region between the pocket and the drain, including the work-function mismatch between the pocket gate and the gap gate, the type of dopant, and the doping concentration, on the device performance are investigated. Simulation and theoretical calculation results indicate that the gap gate material and n-type doping level in the gap region should be optimized simultaneously to make this region fully depleted for further suppression of the off-state leakage current.
文摘Continuous renal replacement therapy(CRRT)is widely used for treating critically-ill patients in the emergency department in China.Anticoagulant therapy is needed to prevent clotting in the extracorporeal circulation during CRRT.Regional citrate anticoagulation(RCA)has been shown to potentially be safer and more effective,and is now recommended as the preferred anticoagulant method for CRRT.However,there is still a lack of unified standards for RCA management in the world,and there are many problems in using this method in clinical practice.The Emergency Medical Doctor Branch of the Chinese Medical Doctor Association(CMDA)organized a panel of domestic emergency medicine experts and international experts of CRRT to discuss RCA-related issues,including the advantages and disadvantages of RCA in CRRT anticoagulation,the principle of RCA,parameter settings for RCA,monitoring of RCA(mainly metabolic acid-base disorders),and special issues during RCA.Based on the latest available research evidence as well as the paneled experts'clinical experience,considering the generalizability,suitability,and potential resource utilization,while also balancing clinical advantages and disadvantages,a total of 16 guideline recommendations were formed from the experts'consensus.