Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of h...Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.展开更多
Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate...Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate the promoting effects of N input on GHG emissions in forest soils. Here, we quantify the separate and combined effects of biochar amendment(0, 20, and 40 t·ha) and N addition(0, 30, 60, and 90 kg N·ha·yr) on soil GHG fluxes in a long-term field experiment at a Moso bamboo(Phyllostachys edulis) plantation.Results: Low and moderate N inputs(≤60 kg N·ha·yr) significantly increase mean annual soil carbon dioxide(CO) and nitrous oxide(NO) emissions by 17.0%–25.4% and 29.8%–31.2%, respectively, while decreasing methane(CH) uptake by 12.4%–15.9%, leading to increases in the global warming potential(GWP) of soil CHand NO fluxes by 32.4%–44.0%. Moreover, N addition reduces soil organic carbon(C;SOC) storage by 0.2%–6.5%. Compared to the control treatment, biochar amendment increases mean annual soil CO2emissions, CHuptake, and SOC storage by 18.4%–25.4%, 7.6%–15.8%, and 7.1%–13.4%, respectively, while decreasing NO emissions by 17.6%–19.2%, leading to a GWP decrease of 18.4%–21.4%. Biochar amendments significantly enhance the promoting effects of N addition on soil COemissions, while substantially offsetting the promotion of N2O emissions, inhibition of CHuptake, and decreased SOC storage, resulting in a GWP decrease of 9.1%–30.3%.Additionally, soil COand CHfluxes are significantly and positively correlated with soil microbial biomass C(MBC) and pH. Meanwhile, NO emissions have a significant and positive correlation with soil MBC and a negative correlation with pH.Conclusions: Biochar amendment can increase SOC storage and offset the enhanced GWP mediated by elevated N deposition and is, thus, a potential strategy for increasing soil C sinks and decreasing GWPs of soil CHand NO under increasing atmospheric N deposition in Moso bamboo plantations.展开更多
Background:It is still not clear whether the effects of N deposition on soil greenhouse gas(GHG)emissions are influenced by plantation management schemes.A field experiment was conducted to investigate the effects of ...Background:It is still not clear whether the effects of N deposition on soil greenhouse gas(GHG)emissions are influenced by plantation management schemes.A field experiment was conducted to investigate the effects of conventional management(CM)versus intensive management(IM),in combination with simulated N deposition levels of control(ambient N deposition),30 kg N·ha^(−1)·year^(−1)(N30,ambient+30 kg N·ha^(−1)·year^(−1)),60 kg N·ha^(−1)·year^(−1)(N60,ambient+60 kg N·ha^(−1)·year^(−1)),or 90 kg N·ha^(−1)·year^(−1)(N90,ambient+90 kg N·ha^(−1)·year^(−1))on soil CO_(2),CH_(4),and N_(2)O fluxes.For this,24 plots were set up in a Moso bamboo(Phyllostachys edulis)plantation from January 2013 to December 2015.Gas samples were collected monthly from January 2015 to December 2015.Results:Compared with CM,IM significantly increased soil CO_(2) emissions and their temperature sensitivity(Q_(10))but had no significant effects on soil CH_(4) uptake or N_(2)O emissions.In the CM plots,N30 and N60 significantly increased soil CO_(2) emissions,while N60 and N90 significantly increased soil N_(2)O emissions.In the IM plots,N30 and N60 significantly increased soil CO_(2) and N_(2)O emissions,while N60 and N90 significantly decreased soil CH_(4) uptake.Overall,in both CM and IM plots,N30 and N60 significantly increased global warming potentials,whereas N90 did not significantly affect global warming potential.However,N addition significantly decreased the Q_(10) value of soil CO_(2) emissions under IM but not under CM.Soil microbial biomass carbon was significantly and positively correlated with soil CO_(2) and N_(2)O emissions but significantly and negatively correlated with soil CH_(4) uptake.Conclusion:Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.展开更多
Passivation by the inorganic-rich solid electrolyte interphase(SEI),especially the LiF-rich SEI,is highly desirable to guarantee the durable lifespan of Li metal batteries(LMBs).Here,we report a diluent with the capab...Passivation by the inorganic-rich solid electrolyte interphase(SEI),especially the LiF-rich SEI,is highly desirable to guarantee the durable lifespan of Li metal batteries(LMBs).Here,we report a diluent with the capability to facilitate the formation of LiF-rich SEI while avoiding the excess consumption of Li salts.Dissimilar to most of reported inert diluents,heptafluoro-l-methoxypropane(HM) is firstly demonstrated to cooperate with the decomposition of anions to generate LiF-rich SEI via releasing Fcontaining species near Li surface.The designed electrolyte consisting of 1.8 M LiFSI in the mixture of1,2-dimethoxyethane(DME)/HM(2:1 by vol.) achieves excellent compatibility with both Li metal anodes(Coulombic efficiency~99.8%) and high-voltage cathodes(4.4 V LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) and 4.5 V LiCoO_(2)(LCO) vs Li^(+)/Li).The 4.4 V Li(20μm)‖NMC811(2.5 mA h cm^(-2)) and 4.5 V Li(20μm)‖LCO(2.5 mA h cm^(-2)) cells achieve capacity retentions of 80% over 560 cycles and 80% over 505 cycles,respectively.Meanwhile,the anode-free pouch cell delivers an energy density of~293 W h kg^(-1)initially and retains 70% of capacity after 100 deep cycles.This work highlights the critical impact of diluent on the SEI formation,and opens up a new direction for designing desirable interfacial chemistries to enable high-performance LMBs.展开更多
The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neu...The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.展开更多
Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐do...Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation.展开更多
The electrocarboxylation reaction is an attractive means to convert CO_(2) into valuable chemicals under ambient conditions,while it still suffers from low efficiency due to the high stability of CO_(2).In this work,w...The electrocarboxylation reaction is an attractive means to convert CO_(2) into valuable chemicals under ambient conditions,while it still suffers from low efficiency due to the high stability of CO_(2).In this work,we report a double activation strategy for simultaneously activating CO_(2) and acetophenone by silver-doped CeO_(2)(Ag-CeO_(2)) nanowires,featuring as an effective electrocatalyst for electrocarboxylation of acetophenone with CO_(2).Compared to the Ag foil,Ag nanoparticles and CeO_(2) nanowires,the Ag-CeO_(2)nanowire catalyst allowed to reduce the onset potential difference between CO_(2) and acetophenone activation,thus enabling efficient electrocarboxylation to form 2-phenyllactic acid.The Faradaic efficiency for producing 2-phenyllactic acid reached 91%at−1.8 V versus Ag/AgI.This double activation strategy of activating both CO_(2)and organic substrate molecules can benefit the catalyst design to improve activities and selectivities in upgrading CO_(2)fixation for higher-value electrocarboxylation.展开更多
Purpose–High-speed maglev technology can address the issues of adhesion,friction,vibration and highspeed current collection in traditional wheel-rail systems,making it an important direction for the future developmen...Purpose–High-speed maglev technology can address the issues of adhesion,friction,vibration and highspeed current collection in traditional wheel-rail systems,making it an important direction for the future development of high-speed rail technology.Design/methodology/approach–This paper elaborates on the demand and significance of developing high-speed maglev technology worldwide and examines the current status and technological maturity of several major high-speed maglev systems globally.Findings–This paper summarizes the challenges in the development of high-speed maglev railways in China.Based on this analysis,it puts forward considerations for future research on high-speed maglev railways.Originality/value–This paper describes the development status and technical maturity of several major high-speed maglev systems in the world for the first time,summarizes the existing problems in the development of China’s high-speed maglev railway and on this basis,puts forward the thinking of the next research of China’s high-speed maglev railway.展开更多
We developed a single-particle optical particle counter with polarization detection(SOPC)for the real-time measurement of the optical size and depolarization ratio(defined as the ratio of the vertical component to the...We developed a single-particle optical particle counter with polarization detection(SOPC)for the real-time measurement of the optical size and depolarization ratio(defined as the ratio of the vertical component to the parallel component of backward scattering)of atmospheric particles,the polarization ratio(DR)value can reflect the irregularity of the particles.The SOPC can detect aerosol particles with size larger than 500 nm and the maximum particle count rate reaches~1.8×10^(5)particles per liter.The SOPC uses a modulated polarization laser to measure the optical size of particles according to forward scattering signal and the DR value of the particles by backward S and P signal components.The sampling rate of the SOPC was 106#/(sec·channel),and all the raw data were processed online.The calibration curve was obtained by polystyrene latex spheres with sizes of 0.5-10μm,and the average relative deviation of measurement was 3.96% for sub 3μm particles.T-matrix method calculations showed that the DR value of backscatter light at 120°could describe the variations in the aspect ratio of particles in the above size range.We performed insitu observations for the evaluation of the SOPC,the mass concentration constructed by the SOPC showed good agreement with the PM_(2.5)measurements in a nearby state-controlled monitoring site.This instrument could provide useful data for source appointment and regulations against air pollution.展开更多
Glycerol(GLY) aerobic oxidation in an aqueous solution is one of the most prospective pathways in biomass transformation, where the supported catalysts based on noble metals(mainly Au, Pd, Pt) are most commonly employ...Glycerol(GLY) aerobic oxidation in an aqueous solution is one of the most prospective pathways in biomass transformation, where the supported catalysts based on noble metals(mainly Au, Pd, Pt) are most commonly employed. Herein, Pt nanoparticles supported on rehydrated MgxAl1-hydrotalcite(denoted as re-MgxAl1-LDH-Pt) were prepared via impregnation-reduction method followed by an in situ rehydration process, which showed high activity and selectivity towards GLY oxidation to produce glyceric acid(GLYA) at room temperature. The metal-support interfacial structure and catalyst basicity were modulated by changing the Mg/Al molar ratio of the hydrotalcite precursor, and the optimal performance was achieved on re-Mg6Al1-LDH-Pt with a GLY conversion of 87.6% and a GLYA yield of 58.6%, which exceeded the traditional activated carbon and oxide supports. A combinative study on structural characterizations(XANES, CO-FTIR spectra, and benzoic acid titration) proves that a higher Mg/Al molar ratio promotes the formation of positively charged Ptd+species at metal-support interface, which accelerates bond cleavage of a-C–H and improves catalytic activity. Moreover, a higher Mg/Al molar ratio provides a stronger basicity of support that contributes to the oxidation of terminal-hydroxyl and thus enhances the selectivity of GLYA. This catalyst with tunable metal-support interaction shows prospective applications toward transformation of biomass-based polyols.展开更多
The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generatio...The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generation control(AGC)and compensate the influence of wind power fluctuations simultaneously,ramping capacity should be considered in the dispatch model of thermals.Meanwhile,conventional methods in this area do not take the impact of transmission loss into the dispatch model,or rely on offline network model and parameters,failing to reflect the real relationships between the wind farms and thermal generators.This paper proposes an online approach for AGC dispatch units considering the above issues.Firstly,the power loss sensitivity is online identified using recursive least square method based on the real-time data of phasor measurement units.It sets up power balance constraint and results in a more accurate dispatch model.Then,an improved multi-objective optimization model of dispatch is proposed and a connection is established between the thermal units with fast ramping capacity and the wind farms with rapid fluctuations.Genetic algorithm is used to solve the dispatch model.The proposed method is compared with conventional methods in simulation case in the IEEE 30-bus system.Finally,simulation results verify the validity and the feasibility of identification method and optimization model.展开更多
Cerium is one of multivalent rear earth elements, which can transfer from trivalence to tretavalence at oxidizing environment. This process may cause variable degrees of fractionation of Ce from other trivalent rear e...Cerium is one of multivalent rear earth elements, which can transfer from trivalence to tretavalence at oxidizing environment. This process may cause variable degrees of fractionation of Ce from other trivalent rear earth elements, and thus may provide specific insight into the geological processes associated with marked redoxomorphism. Multiple geochemical tracing of Sr-Nd-Ce isotopes are performed on the felsic and mafic intrusives of the Neoproterozoic(~800 Ma) Huangling complex located at the eastern Three Gorges, South China. The intrusive rocks exclusively show various extents of negative Ce anomalies. On the εCe-εNd plot, most samples from the mafic intrusions scatter within the second quadrant, whereas those from the felsic intrusions within the fourth Quadrant. Both of the two groups exhibit relatively large range of ?Ce(t) variation but limited ?Nd(t) range, which cause a deviation from the "crustal array" and reveal a decoupled Nd-Ce isotope correlation. The intermediate-felsic suite have varied Ce/Ce* ratios but broadly proximate εCe(t) values, indicating that their negative Ce anomalies were generated during the magmatism; on the contrary, a positive correlation between εCe(t) and Ce/Ce* is observed for the intermediate-mafic suite, an indication of an origin of post-magmatic alteration or metamorphism for their Ce anomalies. Calculation of model age, the occurrence age of negative Ce anomalies(TCe) for the intermediate-mafic samples infers that the alteration events took place 〉350 Ma. Data showed that negative Ce anomalies of the felsic intrusions may reflect an increase of oxygen fugacity during magma ascending, rather than an inheritance from their source rocks. This explanation implies that the Neoproterozoic magmatism occurred at the continental nucleus of the Yangtze block were developing at a geodynamic context of rapidly regional uplifting.展开更多
MapReduce is a very popular parallel programming model for cloud computing platforms, and has become an effective method for processing massive data by using a cluster of computers. X-to-MapReduce (X is a program lan...MapReduce is a very popular parallel programming model for cloud computing platforms, and has become an effective method for processing massive data by using a cluster of computers. X-to-MapReduce (X is a program language) translator is a possible solution to help traditional programmers easily deploy an application to cloud systems through translating sequential codes to MapReduce codes. Recently, some SQL- to-MapReduce translators emerge to translate SQL-like queries to MapReduce codes and have good performance in cloud systems. However, SQL-to-MapReduce translators mainly focus on SQL-like queries, but not on numerical computation. Matlab is a high-level language and interactive environment for numerical computation, visualization, and programming, which is very popular in engineering. We propose and develop a simple Matlab-to-MapReduce translator for cloud computing, called M2M, for basic numerical computations. M2M can translate a Matlab code with up to 100 commands to MapReduce code in few seconds, which may cost a proficient Hadoop MapReduce programmer some days on coding so many commands. In addition, M2M can also recognize the dependency between complex commands, which is always confusing during hand coding. We implemented M2M with evaluation for Matlab commands on a cluster. Several common commands are used in our experiments. The results show that M2M is comparable in performance with hand-coded programs.展开更多
The tracking control problem for Flexible Joint Manipulator Control System(FJMCS)with unmeasurable states is addressed in this paper.Firstly,a High-Gain Observer(HGO)is constructed to estimate the unmeasurable states ...The tracking control problem for Flexible Joint Manipulator Control System(FJMCS)with unmeasurable states is addressed in this paper.Firstly,a High-Gain Observer(HGO)is constructed to estimate the unmeasurable states and the uncertainties.Then,a Dynamic Surface Control(DSC)scheme is developed by using the estimation of HGO.The newly proposed controller has two advantages over the existing methods:(A)a novel Spike Suppression Function(SSF)is developed to avoid the estimation spike problem in the existing HGO-based controllers.(B)Unlike the existing observer-based partial feedback control scheme that can only estimate the unmeasurable states,the proposed HGO can estimate both the unmeasurable states and uncertainties.The closed-loop system stability is proved by the Lyapunov theory.Simulation results demonstrate the effectiveness of the proposed controller.展开更多
This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adj...This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adjusting the system operation point to the optimum.In each decision moment,the following tasks are executed in turn:①locally linearizing the system model at the current operation point with the online model identification by using measurements;②narrowing down the gaps between unsatisfied security requirements and their security thresholds in order of priority;③minimizing the generation cost;④minimizing the security indicators within their security thresholds.Compared with the existing real-time dispatch strategies,the proposed method can adjust the deviations caused by unpredictable power flow fluctuations,avoid dispatch bias caused by model parameter errors,and reduce the constraint violations in the dispatch decision process.The effectiveness of the proposed method is verified with the IEEE 39-bus system.展开更多
All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a no...All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a novel solid electrolyte(SE)for ASSLBs based on experimental and simulation methods.The structure,electronic property,mechanical property,and ionic transport properties of LZPS(x=0,0.03,0.06,and 0.1)are investigated with first-principles calculations.Meanwhile,LZPS is prepared by solid states reaction method.By combining experimental analysis and first-principles calculations,it is confirmed that a small amount of Zr4+can be successfully doped into the framework ofβ-LPS composites without significantly compromising structural integrity.When the Zr^(4+)concentration is x=0.03,the doped material Li_(2.88)Zr_(0.03)PS_(4)exhibits the highest ionic conductivity(5.1×10^(−4)S·cm^(−1))at 30℃,and the Li-ion migration energy barrier is the lowest.The Li_(2.88)Zr_(0.03)PS_(4)SE has obtained the best mechanical properties,the good ductility,and shear deformation resistance,which can better maintain the structural stability of the battery.In addition,the Li/Li symmetrical cell is assembled,which shows excellent electrochemical stability of electrolyte against lithium.The constructed all-solid-state batteries(LiCoO_(2)-Li_(6)PS_(5)Cl|Li_(2.88)Zr_(0.03)PS_(4)|Li-In)delivers an initial discharge capacity of 130.4 mAh·g^(−1)at 0.2 C and a capacity retention of 85.1%after 100 cycles at room temperature.This study provides a promising electrolyte for the application of ASSLBs with high ionic conductivity and excellent stability against lithium.展开更多
文摘Purpose–The purpose of this study is to study the quantitative evaluation method of contact wire cracks by analyzing the changing law of eddy current signal characteristics under different cracks of contact wire of high-speed railway so as to provide a new way of thinking and method for the detection of contact wire injuries of high-speed railway.Design/methodology/approach–Based on the principle of eddy current detection and the specification parameters of high-speed railway contact wires in China,a finite element model for eddy current testing of contact wires was established to explore the variation patterns of crack signal characteristics in numerical simulation.A crack detection system based on eddy current detection was built,and eddy current detection voltage data was obtained for cracks of different depths and widths.By analyzing the variation law of eddy current signals,characteristic parameters were obtained and a quantitative evaluation model for crack width and depth was established based on the back propagation(BP)neural network.Findings–Numerical simulation and experimental detection of eddy current signal change rule is basically consistent,based on the law of the selected characteristics of the parameters in the BP neural network crack quantitative evaluation model also has a certain degree of effectiveness and reliability.BP neural network training results show that the classification accuracy for different widths and depths of the classification is 100 and 85.71%,respectively,and can be effectively realized on the high-speed railway contact line cracks of the quantitative evaluation classification.Originality/value–This study establishes a new type of high-speed railway contact wire crack detection and identification method,which provides a new technical means for high-speed railway contact wire injury detection.The study of eddy current characteristic law and quantitative evaluation model for different cracks in contact line has important academic value and practical significance,and it has certain guiding significance for the detection technology of contact line in high-speed railway.
基金sponsored by the National Natural Science Foundation of China,China(Grant Nos.31470529,32125027)Zhejiang A&F University Research and Development Fund,China(Nos.2022LFR006,2021LFR060).
文摘Background: Nitrogen(N) deposition affects soil greenhouse gas(GHG) emissions, while biochar application reduces GHG emissions in agricultural soils. However, it remains unclear whether biochar amendment can alleviate the promoting effects of N input on GHG emissions in forest soils. Here, we quantify the separate and combined effects of biochar amendment(0, 20, and 40 t·ha) and N addition(0, 30, 60, and 90 kg N·ha·yr) on soil GHG fluxes in a long-term field experiment at a Moso bamboo(Phyllostachys edulis) plantation.Results: Low and moderate N inputs(≤60 kg N·ha·yr) significantly increase mean annual soil carbon dioxide(CO) and nitrous oxide(NO) emissions by 17.0%–25.4% and 29.8%–31.2%, respectively, while decreasing methane(CH) uptake by 12.4%–15.9%, leading to increases in the global warming potential(GWP) of soil CHand NO fluxes by 32.4%–44.0%. Moreover, N addition reduces soil organic carbon(C;SOC) storage by 0.2%–6.5%. Compared to the control treatment, biochar amendment increases mean annual soil CO2emissions, CHuptake, and SOC storage by 18.4%–25.4%, 7.6%–15.8%, and 7.1%–13.4%, respectively, while decreasing NO emissions by 17.6%–19.2%, leading to a GWP decrease of 18.4%–21.4%. Biochar amendments significantly enhance the promoting effects of N addition on soil COemissions, while substantially offsetting the promotion of N2O emissions, inhibition of CHuptake, and decreased SOC storage, resulting in a GWP decrease of 9.1%–30.3%.Additionally, soil COand CHfluxes are significantly and positively correlated with soil microbial biomass C(MBC) and pH. Meanwhile, NO emissions have a significant and positive correlation with soil MBC and a negative correlation with pH.Conclusions: Biochar amendment can increase SOC storage and offset the enhanced GWP mediated by elevated N deposition and is, thus, a potential strategy for increasing soil C sinks and decreasing GWPs of soil CHand NO under increasing atmospheric N deposition in Moso bamboo plantations.
基金This study was funded by the National Natural Science Foundation of China(Grant Nos.31270517 and 31470529).
文摘Background:It is still not clear whether the effects of N deposition on soil greenhouse gas(GHG)emissions are influenced by plantation management schemes.A field experiment was conducted to investigate the effects of conventional management(CM)versus intensive management(IM),in combination with simulated N deposition levels of control(ambient N deposition),30 kg N·ha^(−1)·year^(−1)(N30,ambient+30 kg N·ha^(−1)·year^(−1)),60 kg N·ha^(−1)·year^(−1)(N60,ambient+60 kg N·ha^(−1)·year^(−1)),or 90 kg N·ha^(−1)·year^(−1)(N90,ambient+90 kg N·ha^(−1)·year^(−1))on soil CO_(2),CH_(4),and N_(2)O fluxes.For this,24 plots were set up in a Moso bamboo(Phyllostachys edulis)plantation from January 2013 to December 2015.Gas samples were collected monthly from January 2015 to December 2015.Results:Compared with CM,IM significantly increased soil CO_(2) emissions and their temperature sensitivity(Q_(10))but had no significant effects on soil CH_(4) uptake or N_(2)O emissions.In the CM plots,N30 and N60 significantly increased soil CO_(2) emissions,while N60 and N90 significantly increased soil N_(2)O emissions.In the IM plots,N30 and N60 significantly increased soil CO_(2) and N_(2)O emissions,while N60 and N90 significantly decreased soil CH_(4) uptake.Overall,in both CM and IM plots,N30 and N60 significantly increased global warming potentials,whereas N90 did not significantly affect global warming potential.However,N addition significantly decreased the Q_(10) value of soil CO_(2) emissions under IM but not under CM.Soil microbial biomass carbon was significantly and positively correlated with soil CO_(2) and N_(2)O emissions but significantly and negatively correlated with soil CH_(4) uptake.Conclusion:Our results indicate that management scheme effects should be considered when assessing the effect of atmospheric N deposition on GHG emissions in bamboo plantations.
基金supported by the National Natural Science Foundation of China(22072134,22161142017,and U21A2081)the Natural Science Foundation of Zhejiang Province(LZ21B030002)+2 种基金the Fundamental Research Funds for the Zhejiang Provincial Universities(2021XZZX010)the Fundamental Research Funds for the Central Universities(2021FZZX001-09)“Hundred Talents Program” of Zhejiang University。
文摘Passivation by the inorganic-rich solid electrolyte interphase(SEI),especially the LiF-rich SEI,is highly desirable to guarantee the durable lifespan of Li metal batteries(LMBs).Here,we report a diluent with the capability to facilitate the formation of LiF-rich SEI while avoiding the excess consumption of Li salts.Dissimilar to most of reported inert diluents,heptafluoro-l-methoxypropane(HM) is firstly demonstrated to cooperate with the decomposition of anions to generate LiF-rich SEI via releasing Fcontaining species near Li surface.The designed electrolyte consisting of 1.8 M LiFSI in the mixture of1,2-dimethoxyethane(DME)/HM(2:1 by vol.) achieves excellent compatibility with both Li metal anodes(Coulombic efficiency~99.8%) and high-voltage cathodes(4.4 V LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)(NMC811) and 4.5 V LiCoO_(2)(LCO) vs Li^(+)/Li).The 4.4 V Li(20μm)‖NMC811(2.5 mA h cm^(-2)) and 4.5 V Li(20μm)‖LCO(2.5 mA h cm^(-2)) cells achieve capacity retentions of 80% over 560 cycles and 80% over 505 cycles,respectively.Meanwhile,the anode-free pouch cell delivers an energy density of~293 W h kg^(-1)initially and retains 70% of capacity after 100 deep cycles.This work highlights the critical impact of diluent on the SEI formation,and opens up a new direction for designing desirable interfacial chemistries to enable high-performance LMBs.
文摘The electrochemical conversion of carbon dioxide(CO_(2))has been attracting increasingly research interest in the past decade,with the ultimate goal of utilizing electricity from renewable energy to realize carbon neutrality,as well as economic and energy benefits.Nonetheless,the capture and concentrating of CO_(2) cost a substantial portion of energy,while almost all the reported researches showed CO_(2) electroreduction under high concentrations of(typically pure)CO_(2) reactants,and only very few recent studies have investigated the capability of applying low CO_(2) concentrations(such as~10%in flue gases).In this work,we first demonstrated the electroreduction of 0.03%CO_(2)(in helium)in a homemade gas‐phase electrochemical electrolyzer,using a low‐cost copper(Cu)or nanoscale copper(nano‐Cu)catalyst.Mixed with steam,the gas‐phase CO_(2) was directly delivered onto the gas‐solid interface with the Cu catalyst and reduced to CO,without the need/constraint of being adsorbed by aqueous solution or alkaline electrolytes.By tuning the catalyst and experi‐mental parameters,the conversion efficiency of CO_(2) reached as high as~95%.Furthermore,we demonstrated the direct electroreduction of 0.04%CO_(2) from real air sample with an optimized conversion efficiency of~79%,suggesting a promising perspective of the electroreduction ap‐proach toward direct CO_(2) conversion.
文摘Rational design of low‐cost and efficient electrocatalysts for ethanol oxidation reaction(EOR)is imperative for electrocatalytic ethanol fuel cells.In this work,we developed a copper‐doped nickel oxyhydroxide(Cu‐doped NiOOH)catalyst via in situ electrochemical reconstruction of a NiCu alloy.The introduction of Cu dopants increases the specific surface area and more defect sites,as well as forms high‐valence Ni sites.The Cu‐doped NiOOH electrocatalyst exhibited an excellent EOR performance with a peak current density of 227 mA·cm^(–2)at 1.72 V versus reversible hydrogen electrode,high Faradic efficiencies for acetate production(>98%),and excellent electrochemical stability.Our work suggests an attractive route of designing non‐noble metal based electrocatalysts for ethanol oxidation.
文摘The electrocarboxylation reaction is an attractive means to convert CO_(2) into valuable chemicals under ambient conditions,while it still suffers from low efficiency due to the high stability of CO_(2).In this work,we report a double activation strategy for simultaneously activating CO_(2) and acetophenone by silver-doped CeO_(2)(Ag-CeO_(2)) nanowires,featuring as an effective electrocatalyst for electrocarboxylation of acetophenone with CO_(2).Compared to the Ag foil,Ag nanoparticles and CeO_(2) nanowires,the Ag-CeO_(2)nanowire catalyst allowed to reduce the onset potential difference between CO_(2) and acetophenone activation,thus enabling efficient electrocarboxylation to form 2-phenyllactic acid.The Faradaic efficiency for producing 2-phenyllactic acid reached 91%at−1.8 V versus Ag/AgI.This double activation strategy of activating both CO_(2)and organic substrate molecules can benefit the catalyst design to improve activities and selectivities in upgrading CO_(2)fixation for higher-value electrocarboxylation.
基金This paper was supported by the funding of Strategic research and consulting project of Chinese Academy of Engineering(Grant No.2022-XBZD-20).
文摘Purpose–High-speed maglev technology can address the issues of adhesion,friction,vibration and highspeed current collection in traditional wheel-rail systems,making it an important direction for the future development of high-speed rail technology.Design/methodology/approach–This paper elaborates on the demand and significance of developing high-speed maglev technology worldwide and examines the current status and technological maturity of several major high-speed maglev systems globally.Findings–This paper summarizes the challenges in the development of high-speed maglev railways in China.Based on this analysis,it puts forward considerations for future research on high-speed maglev railways.Originality/value–This paper describes the development status and technical maturity of several major high-speed maglev systems in the world for the first time,summarizes the existing problems in the development of China’s high-speed maglev railway and on this basis,puts forward the thinking of the next research of China’s high-speed maglev railway.
基金supported by the Research and Development of Instruments and Equipments,Chinese Academy of Sciences(No.YJKYYQ20200009)。
文摘We developed a single-particle optical particle counter with polarization detection(SOPC)for the real-time measurement of the optical size and depolarization ratio(defined as the ratio of the vertical component to the parallel component of backward scattering)of atmospheric particles,the polarization ratio(DR)value can reflect the irregularity of the particles.The SOPC can detect aerosol particles with size larger than 500 nm and the maximum particle count rate reaches~1.8×10^(5)particles per liter.The SOPC uses a modulated polarization laser to measure the optical size of particles according to forward scattering signal and the DR value of the particles by backward S and P signal components.The sampling rate of the SOPC was 106#/(sec·channel),and all the raw data were processed online.The calibration curve was obtained by polystyrene latex spheres with sizes of 0.5-10μm,and the average relative deviation of measurement was 3.96% for sub 3μm particles.T-matrix method calculations showed that the DR value of backscatter light at 120°could describe the variations in the aspect ratio of particles in the above size range.We performed insitu observations for the evaluation of the SOPC,the mass concentration constructed by the SOPC showed good agreement with the PM_(2.5)measurements in a nearby state-controlled monitoring site.This instrument could provide useful data for source appointment and regulations against air pollution.
基金supported by the National Natural Science Foundation of China (21871021 and 21521005)the National Key Research and Development Program (2017YFA0206804)the Fundamental Research Funds for the Central Universities (buctylkxj01 and XK1802-6)
文摘Glycerol(GLY) aerobic oxidation in an aqueous solution is one of the most prospective pathways in biomass transformation, where the supported catalysts based on noble metals(mainly Au, Pd, Pt) are most commonly employed. Herein, Pt nanoparticles supported on rehydrated MgxAl1-hydrotalcite(denoted as re-MgxAl1-LDH-Pt) were prepared via impregnation-reduction method followed by an in situ rehydration process, which showed high activity and selectivity towards GLY oxidation to produce glyceric acid(GLYA) at room temperature. The metal-support interfacial structure and catalyst basicity were modulated by changing the Mg/Al molar ratio of the hydrotalcite precursor, and the optimal performance was achieved on re-Mg6Al1-LDH-Pt with a GLY conversion of 87.6% and a GLYA yield of 58.6%, which exceeded the traditional activated carbon and oxide supports. A combinative study on structural characterizations(XANES, CO-FTIR spectra, and benzoic acid titration) proves that a higher Mg/Al molar ratio promotes the formation of positively charged Ptd+species at metal-support interface, which accelerates bond cleavage of a-C–H and improves catalytic activity. Moreover, a higher Mg/Al molar ratio provides a stronger basicity of support that contributes to the oxidation of terminal-hydroxyl and thus enhances the selectivity of GLYA. This catalyst with tunable metal-support interaction shows prospective applications toward transformation of biomass-based polyols.
基金This work is supported in part by Major State Basic Research Development Program of China(No.2012CB215206)National Natural Science Foundation of China(No.51107061).
文摘The high penetration of wind energy sources in power systems has substantially increased the demand for faster-ramping thermal units participating in the frequency regulation service.To fulfill the automatic generation control(AGC)and compensate the influence of wind power fluctuations simultaneously,ramping capacity should be considered in the dispatch model of thermals.Meanwhile,conventional methods in this area do not take the impact of transmission loss into the dispatch model,or rely on offline network model and parameters,failing to reflect the real relationships between the wind farms and thermal generators.This paper proposes an online approach for AGC dispatch units considering the above issues.Firstly,the power loss sensitivity is online identified using recursive least square method based on the real-time data of phasor measurement units.It sets up power balance constraint and results in a more accurate dispatch model.Then,an improved multi-objective optimization model of dispatch is proposed and a connection is established between the thermal units with fast ramping capacity and the wind farms with rapid fluctuations.Genetic algorithm is used to solve the dispatch model.The proposed method is compared with conventional methods in simulation case in the IEEE 30-bus system.Finally,simulation results verify the validity and the feasibility of identification method and optimization model.
基金supported by the National Natural Science Foundation of China (Nos. 41373037, 41173048, 41503025)
文摘Cerium is one of multivalent rear earth elements, which can transfer from trivalence to tretavalence at oxidizing environment. This process may cause variable degrees of fractionation of Ce from other trivalent rear earth elements, and thus may provide specific insight into the geological processes associated with marked redoxomorphism. Multiple geochemical tracing of Sr-Nd-Ce isotopes are performed on the felsic and mafic intrusives of the Neoproterozoic(~800 Ma) Huangling complex located at the eastern Three Gorges, South China. The intrusive rocks exclusively show various extents of negative Ce anomalies. On the εCe-εNd plot, most samples from the mafic intrusions scatter within the second quadrant, whereas those from the felsic intrusions within the fourth Quadrant. Both of the two groups exhibit relatively large range of ?Ce(t) variation but limited ?Nd(t) range, which cause a deviation from the "crustal array" and reveal a decoupled Nd-Ce isotope correlation. The intermediate-felsic suite have varied Ce/Ce* ratios but broadly proximate εCe(t) values, indicating that their negative Ce anomalies were generated during the magmatism; on the contrary, a positive correlation between εCe(t) and Ce/Ce* is observed for the intermediate-mafic suite, an indication of an origin of post-magmatic alteration or metamorphism for their Ce anomalies. Calculation of model age, the occurrence age of negative Ce anomalies(TCe) for the intermediate-mafic samples infers that the alteration events took place 〉350 Ma. Data showed that negative Ce anomalies of the felsic intrusions may reflect an increase of oxygen fugacity during magma ascending, rather than an inheritance from their source rocks. This explanation implies that the Neoproterozoic magmatism occurred at the continental nucleus of the Yangtze block were developing at a geodynamic context of rapidly regional uplifting.
基金supported by the National Natural Science Foundation of China(Nos.61175047,61100117,and 61202043)the US National Science Foundation(No.OCI-1156733)
文摘MapReduce is a very popular parallel programming model for cloud computing platforms, and has become an effective method for processing massive data by using a cluster of computers. X-to-MapReduce (X is a program language) translator is a possible solution to help traditional programmers easily deploy an application to cloud systems through translating sequential codes to MapReduce codes. Recently, some SQL- to-MapReduce translators emerge to translate SQL-like queries to MapReduce codes and have good performance in cloud systems. However, SQL-to-MapReduce translators mainly focus on SQL-like queries, but not on numerical computation. Matlab is a high-level language and interactive environment for numerical computation, visualization, and programming, which is very popular in engineering. We propose and develop a simple Matlab-to-MapReduce translator for cloud computing, called M2M, for basic numerical computations. M2M can translate a Matlab code with up to 100 commands to MapReduce code in few seconds, which may cost a proficient Hadoop MapReduce programmer some days on coding so many commands. In addition, M2M can also recognize the dependency between complex commands, which is always confusing during hand coding. We implemented M2M with evaluation for Matlab commands on a cluster. Several common commands are used in our experiments. The results show that M2M is comparable in performance with hand-coded programs.
基金co-supported by Natural Science Foundation of Shaanxi Province(Nos.2020JM-131,2020KW-058)the Key Research and Development Program of Shaanxi,China(Nos.2019GY-025,2018GY-091)+1 种基金Xi’an Science and Technology Plan Project,China(No.2020KJRC0134)Special Fund for High Level Talents of Xijing University,China(No.XJ20B07)。
文摘The tracking control problem for Flexible Joint Manipulator Control System(FJMCS)with unmeasurable states is addressed in this paper.Firstly,a High-Gain Observer(HGO)is constructed to estimate the unmeasurable states and the uncertainties.Then,a Dynamic Surface Control(DSC)scheme is developed by using the estimation of HGO.The newly proposed controller has two advantages over the existing methods:(A)a novel Spike Suppression Function(SSF)is developed to avoid the estimation spike problem in the existing HGO-based controllers.(B)Unlike the existing observer-based partial feedback control scheme that can only estimate the unmeasurable states,the proposed HGO can estimate both the unmeasurable states and uncertainties.The closed-loop system stability is proved by the Lyapunov theory.Simulation results demonstrate the effectiveness of the proposed controller.
基金This work was supported by the National Natural Science Foundation of China(No.51761145106)the Guangdong Provincial Natural Science Foundation of China(No.2018B030306041)+1 种基金the Fundamental Research Funds for the Central Universities(No.2019SJ01)the China Scholarship Council(No.201806155019).
文摘This paper proposes a dynamic-decision-based realtime dispatch method to coordinate the economic objective with multiple types of security dispatch objectives while reducing constraint violations in the process of adjusting the system operation point to the optimum.In each decision moment,the following tasks are executed in turn:①locally linearizing the system model at the current operation point with the online model identification by using measurements;②narrowing down the gaps between unsatisfied security requirements and their security thresholds in order of priority;③minimizing the generation cost;④minimizing the security indicators within their security thresholds.Compared with the existing real-time dispatch strategies,the proposed method can adjust the deviations caused by unpredictable power flow fluctuations,avoid dispatch bias caused by model parameter errors,and reduce the constraint violations in the dispatch decision process.The effectiveness of the proposed method is verified with the IEEE 39-bus system.
基金supported by the National Natural Science Foundation of China(No.11902144).
文摘All-solid-state lithium batteries(ASSLBs)are promising for safety and high-energy-density large-scale energy storage.In this contribution,we propose a Li_(3–4x)Zr_(x)PS_(4)(LZPS)by Zr-dopedβ-Li_(3)PS_(4)(LPS)as a novel solid electrolyte(SE)for ASSLBs based on experimental and simulation methods.The structure,electronic property,mechanical property,and ionic transport properties of LZPS(x=0,0.03,0.06,and 0.1)are investigated with first-principles calculations.Meanwhile,LZPS is prepared by solid states reaction method.By combining experimental analysis and first-principles calculations,it is confirmed that a small amount of Zr4+can be successfully doped into the framework ofβ-LPS composites without significantly compromising structural integrity.When the Zr^(4+)concentration is x=0.03,the doped material Li_(2.88)Zr_(0.03)PS_(4)exhibits the highest ionic conductivity(5.1×10^(−4)S·cm^(−1))at 30℃,and the Li-ion migration energy barrier is the lowest.The Li_(2.88)Zr_(0.03)PS_(4)SE has obtained the best mechanical properties,the good ductility,and shear deformation resistance,which can better maintain the structural stability of the battery.In addition,the Li/Li symmetrical cell is assembled,which shows excellent electrochemical stability of electrolyte against lithium.The constructed all-solid-state batteries(LiCoO_(2)-Li_(6)PS_(5)Cl|Li_(2.88)Zr_(0.03)PS_(4)|Li-In)delivers an initial discharge capacity of 130.4 mAh·g^(−1)at 0.2 C and a capacity retention of 85.1%after 100 cycles at room temperature.This study provides a promising electrolyte for the application of ASSLBs with high ionic conductivity and excellent stability against lithium.