Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures....Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.展开更多
Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines gi...Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.展开更多
Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)s...Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.展开更多
A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes ...A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.展开更多
Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge...Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge challenge.Herein,a superhydrophobic multilayer coating integrated with multidimensional organic-inorganic components is designed on magnesium alloy via one-step plasma-induced thermal field assisted crosslinking deposition(PTCD)processing followed by after-thermal modification.Hard porous MgO ceramic layer and polytetrafluoroethylene(PTFE)nano-particles work as the bottom layer skeleton and filler components separately,forming an organic-inorganic multilayer structure,in which organic nano-particles can be crosslinked and cured to form a compact polymer-like outer layer with hierarchical surface textures.Remarkably,the chemical robustness after prolonged exposure to aqua regia,strong base and simulated seawater solution profits from polymer-like nanocomposite layer uniformly and compactly across the film bulk.Moreover,the self-similar multilayer structure coating endows it attractive functions of strong mechanical robustness(>100th cyclic rotary abrasion),stable and ultra-low friction coefficient(about 0.084),high-temperature endurance,and robust self-cleaning.The organic-inorganic multilayer coating also exhibits high insulating property with breakdown voltage of 1351.8±42.4 V,dielectric strength of 21.4±0.7 V/μm and resistivity of 3.2×10^(10)Ω·cm.The excellent multifunction benefits from ceramic bottom skeleton,the assembly and deposition of multidimensional nano-particles,and the synergistic effect of organic inorganic components.This study paves the way for designing next generation protective coating on magnesium alloy with great potential for multifunctional applications.展开更多
N6-methyladenosine (m6A),catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14,is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However,the roles a...N6-methyladenosine (m6A),catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14,is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However,the roles and precise mechanisms of m6A modification in regulating neuronal development and adult neurogenesis remain unclear. Here,we examined the function of Mettl3,the key component of the complex,in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced m6A levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neu-ronal development and skewed the differentiation of aNSCs more toward glial lineage,but also affected the morphological maturation of newborn neurons in the adult brain. m6A immunoprecip-itation combined with deep sequencing (MeRIP-seq) revealed that m6A was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically,m6A was present on the transcripts of histone methyltransferase Ezh2,and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively,our results uncover a crosstalk between RNA and histone modifica-tions and indicate that Mettl3-mediated m6A modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.展开更多
Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, t...Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.展开更多
Objective:The goal of this study was to find the risk factors for major intraoperative blood loss(MBL)of pr imary debulking surgery(PDS)for ovarian cancer.Methods:Patients wi th ovarian cancer who underwent PDS in our...Objective:The goal of this study was to find the risk factors for major intraoperative blood loss(MBL)of pr imary debulking surgery(PDS)for ovarian cancer.Methods:Patients wi th ovarian cancer who underwent PDS in our hospital,from 2010 to 2017,were enrolled.The association between risk factors and MBL was modeled with the use of logisde regr ession.Receiver operating characteristic(ROC)curve analysis was used to determine the predictive value of the logi stic regression model.Results:A total of 346 padients met the inclusion criteria.There were 150 patients with MBL.Tumor stage 3/4(P<0.001),American Society of Aneshesiologists(ASA)score 23(P=0.044),ascites volume≥500 ml(P=0.002),radical or ultra radical surgery(P=0.002),and diabetes(P=0.035)were independent risk factors for MBL in patients with ovarian cancer.The logistic regression combined model of these five factors is more reliable in the prediction of MBL with an area under the ROC curve of 0.729 than the tumor stage(ROC curve=0.645)and surgical complexity(ROC curve=0.568).Conclusion:In padients with ovarian cancer,five risk factors for major intraoperative bleeding were identified.Planned surgical procedures and preoperative risk factors can be used to predict perioperative blood requir ements.展开更多
基金supported by the National Natural Science Foundation of China (grant No.52072322)the Department of Science and Technology of Sichuan Province (CN) (grant no.23GJHZ0147,23ZDYF0262,2022YFG0294)Research and Innovation Fund for Graduate Students of Southwest Petroleum University (No.:2022KYCX111)。
文摘Safety remains a persistent challenge for high-energy-density lithium metal batteries(LMBs).The development of safe and non-flammable electrolytes is especially important in harsh conditions such as high temperatures.Herein,a flame-retardant,low-cost and thermally stable long chain phosphate ester based(tributyl phosphate,TBP)electrolyte is reported,which can effectively enhance the cycling stability of highly loaded high-nickel LMBs with high safety through co-solvation strategy.The interfacial compatibility between TBP and electrode is effectively improved using a short-chain ether(glycol dimethyl ether,DME),and a specially competitive solvation structure is further constructed using lithium borate difluorooxalate(LiDFOB)to form the stable and inorganic-rich electrode interphases.Benefiting from the presence of the cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)enriched with LiF and Li_(x)PO_(y)F_(z),the electrolyte demonstrates excellent cycling stability assembled using a 50μm lithium foil anode in combination with a high loading NMC811(15.4 mg cm^(-2))cathode,with 88%capacity retention after 120 cycles.Furthermore,the electrolyte exhibits excellent high-temperature characteristics when used in a 1-Ah pouch cell(N/P=0.26),and higher thermal runaway temperature(238℃)in the ARC(accelerating rate calorimeter)demonstrating high safety.This novel electrolyte adopts long-chain phosphate as the main solvent for the first time,and would provide a new idea for the development of extremely high safety and high-temperature electrolytes.
基金financially supported by the National Natural Science Foundation of China(No.52072322)the Department of Science and Technology of Sichuan Province,China(Nos.23GJHZ0147,23ZDYF0262,2022YFG0294,and 2019-GH02-00052-HZ)。
文摘Electrochemical lithium extraction from salt lakes is an effective strategy for obtaining lithium at a low cost.Nevertheless,the elevated Mg:Li ratio and the presence of numerous coexisting ions in salt lake brines give rise to challenges,such as prolonged lithium extraction periods,diminished lithium extraction efficiency,and considerable environmental pollution.In this work,Li FePO4(LFP)served as the electrode material for electrochemical lithium extraction.The conductive network in the LFP electrode was optimized by adjusting the type of conductive agent.This approach resulted in high lithium extraction efficiency and extended cycle life.When the single conductive agent of acetylene black(AB)or multiwalled carbon nanotubes(MWCNTs)was replaced with the mixed conductive agent of AB/MWCNTs,the average diffusion coefficient of Li+in the electrode increased from 2.35×10^(-9)or 1.77×10^(-9)to 4.21×10^(-9)cm^(2)·s^(-1).At the current density of 20 mA·g^(-1),the average lithium extraction capacity per gram of LFP electrode increased from 30.36 mg with the single conductive agent(AB)to 35.62 mg with the mixed conductive agent(AB/MWCNTs).When the mixed conductive agent was used,the capacity retention of the electrode after 30 cycles reached 82.9%,which was considerably higher than the capacity retention of 65.8%obtained when the single AB was utilized.Meanwhile,the electrode with mixed conductive agent of AB/MWCNTs provided good cycling performance.When the conductive agent content decreased or the loading capacity increased,the electrode containing the mixed conductive agent continued to show excellent electrochemical performance.Furthermore,a self-designed,highly efficient,continuous lithium extraction device was constructed.The electrode utilizing the AB/MWCNT mixed conductive agent maintained excellent adsorption capacity and cycling performance in this device.This work provides a new perspective for the electrochemical extraction of lithium using LFP electrodes.
基金supported by the National Natural Science Foundation of China(Grant Nos.52072322,22209137,51604250)the Department of Science and Technology of Sichuan Province(CN)(GrantNos.2022YFG0294,23GJHZ0147,23ZDYF0262)Production-Education Integration Demonstration Project of Sichuan Province"Photovoltaic Industry Production-Education Integration Comprehensive Demonstration Base of Sichuan Province"(Sichuan Financial Education[2022]No.106.n)。
文摘Sodium-based storage devices based on conversion-type metal sulfide anodes have attracted great atten-tion due to their multivalent ion redox reaction ability.However,they also suffer from sodium polysul-fides(NaPSs)shuttling problems during the sluggish Na^(+) redox process,leading to"voltage failure"and rapid capacity decay.Herein,a metal cobalt-doping vanadium disulfide(Co-VS_(2))is proposed to simulta-neously accelerate the electrochemical reaction of VS_(2) and enhance the bidirectional redox of soluble NaPSs.It is found that the strong adsorption of NaPSs by V-Co alloy nanoparticles formed in situ during the conversion reaction of Co-VS_(2) can effectively inhibit the dissolution and shuttle of NaPSs,and ther-modynamically reduce the formation energy barrier of the reaction path to effectively drive the complete conversion reaction,while the metal transition of Co elements enhances reconversion kinetics to achieve high reversibility.Moreover,Co-VS_(2) also produce abundant sulfur vacancies and unsaturated sulfur edge defects,significantly improve ionic/electron diffusion kinetics.Therefore,the Co-VS_(2) anode exhibits ultrahigh rate capability(562 mA h g^(-1) at 5 A g^(-1)),high initial coulombic efficiency(~90%)and 12,000 ultralong cycle life with capacity retention of 90%in sodium-ion batteries(SIBs),as well as impressive energy/power density(118 Wh kg^(-1)/31,250 W kg^(-1))and over 10.000 stable cycles in sodium-ion hybrid capacitors(SIHCs).Moreover,the pouch cell-type SIHC displays a high-energy density of 102 Wh kg^(-1) and exceed 600 stable cycles.This work deepens the understanding of the electrochemical reaction mechanism of conversion-type metal sulfide anodes and provides a valuable solution to the shuttlingofNaPSs inSIBsandSIHCs.
基金National Natural Science Foundation of China,Grant/Award Numbers:21905265,52072322,U1930402,61974042National Science Foundation,Civil,Mechanical and Manufacturing Innovation,Grant/Award Number:1911905+3 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060140026Department of Science and Technology of Sichuan Province,Grant/Award Numbers:2019‐GH02‐00052‐HZ,2019YFG0220Scientific and Technological Innovation Foundation of Shunde Graduate School,Grant/Award Number:BK19BE024National Key Research and Development Program of China,Grant/Award Number:2017YFA0303403。
文摘A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.
基金The partial supports from the NSFC grant nos.51571077 and 51621091National Basic Science Research Program(2012CB933900)+2 种基金Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology(Lab ASP-2020-05)Aviation Science Foundation of China(NO.20163877014)the Fundamental Research Funds for the Central Universities(HIT.BRETIII.201202)。
文摘Multi-functionalization is the future development direction for protective coatings on metal surface,but has not yet been explored a lot.The effective integration of multiple functions into one material remains a huge challenge.Herein,a superhydrophobic multilayer coating integrated with multidimensional organic-inorganic components is designed on magnesium alloy via one-step plasma-induced thermal field assisted crosslinking deposition(PTCD)processing followed by after-thermal modification.Hard porous MgO ceramic layer and polytetrafluoroethylene(PTFE)nano-particles work as the bottom layer skeleton and filler components separately,forming an organic-inorganic multilayer structure,in which organic nano-particles can be crosslinked and cured to form a compact polymer-like outer layer with hierarchical surface textures.Remarkably,the chemical robustness after prolonged exposure to aqua regia,strong base and simulated seawater solution profits from polymer-like nanocomposite layer uniformly and compactly across the film bulk.Moreover,the self-similar multilayer structure coating endows it attractive functions of strong mechanical robustness(>100th cyclic rotary abrasion),stable and ultra-low friction coefficient(about 0.084),high-temperature endurance,and robust self-cleaning.The organic-inorganic multilayer coating also exhibits high insulating property with breakdown voltage of 1351.8±42.4 V,dielectric strength of 21.4±0.7 V/μm and resistivity of 3.2×10^(10)Ω·cm.The excellent multifunction benefits from ceramic bottom skeleton,the assembly and deposition of multidimensional nano-particles,and the synergistic effect of organic inorganic components.This study paves the way for designing next generation protective coating on magnesium alloy with great potential for multifunctional applications.
基金supported in part by the International Collaboration Program of the Ministry of Science and Technology of China (Grant No. YS2017YFGH001214)the National Natural Science Foundation of China (Grant Nos. 31771395 and 31571518)+6 种基金the National Key R&D Program of China (Grant No. 2016YFC0900400)supported by the National Natural Science Foundation of China (Grant No. 31770872)the Youth Innovation Promotion Association (Grant No. CAS2018133)the National Key R&D Program of China, Stem Cell and Translational Research (Grant No. 2018YFA0109700)supported in part by the National Key R&D Program of China (Grant No. 2017YFC1001703)the Key R&D Program of Zhejiang Province (Grant No. 2017C03009)Zhejiang Provincial Program for the Cultivation of High-level Innovative Health Talents (2016-6), China
文摘N6-methyladenosine (m6A),catalyzed by the methyltransferase complex consisting of Mettl3 and Mettl14,is the most abundant RNA modification in mRNAs and participates in diverse biological processes. However,the roles and precise mechanisms of m6A modification in regulating neuronal development and adult neurogenesis remain unclear. Here,we examined the function of Mettl3,the key component of the complex,in neuronal development and adult neurogenesis of mice. We found that the depletion of Mettl3 significantly reduced m6A levels in adult neural stem cells (aNSCs) and inhibited the proliferation of aNSCs. Mettl3 depletion not only inhibited neu-ronal development and skewed the differentiation of aNSCs more toward glial lineage,but also affected the morphological maturation of newborn neurons in the adult brain. m6A immunoprecip-itation combined with deep sequencing (MeRIP-seq) revealed that m6A was predominantly enriched in transcripts related to neurogenesis and neuronal development. Mechanistically,m6A was present on the transcripts of histone methyltransferase Ezh2,and its reduction upon Mettl3 knockdown decreased both Ezh2 protein expression and consequent H3K27me3 levels. The defects of neurogenesis and neuronal development induced by Mettl3 depletion could be rescued by Ezh2 overexpression. Collectively,our results uncover a crosstalk between RNA and histone modifica-tions and indicate that Mettl3-mediated m6A modification plays an important role in regulating neurogenesis and neuronal development through modulating Ezh2.
文摘Magnetic yolk-shell structured anatase-based microspheres were fabricated through successive and facile sol-gel coating on magnetite particles, followed by annealing treatments. Upon loading with gold nanoparticles, the obtained functional magnetic microspheres as heterogeneous catalysts showed superior performance in catalyzing the epoxidation of styrene with extraordinary high conversion (89.5%) and selectivity (90.8%) towards styrene oxide. It is believed that the construction process of these fascinating materials features many implications for creating other functional nanocomposites.
基金the National Key Research and Development Program of China(No.2016YFA0201404)Natural Science Foundation of Beijing(7222204).
文摘Objective:The goal of this study was to find the risk factors for major intraoperative blood loss(MBL)of pr imary debulking surgery(PDS)for ovarian cancer.Methods:Patients wi th ovarian cancer who underwent PDS in our hospital,from 2010 to 2017,were enrolled.The association between risk factors and MBL was modeled with the use of logisde regr ession.Receiver operating characteristic(ROC)curve analysis was used to determine the predictive value of the logi stic regression model.Results:A total of 346 padients met the inclusion criteria.There were 150 patients with MBL.Tumor stage 3/4(P<0.001),American Society of Aneshesiologists(ASA)score 23(P=0.044),ascites volume≥500 ml(P=0.002),radical or ultra radical surgery(P=0.002),and diabetes(P=0.035)were independent risk factors for MBL in patients with ovarian cancer.The logistic regression combined model of these five factors is more reliable in the prediction of MBL with an area under the ROC curve of 0.729 than the tumor stage(ROC curve=0.645)and surgical complexity(ROC curve=0.568).Conclusion:In padients with ovarian cancer,five risk factors for major intraoperative bleeding were identified.Planned surgical procedures and preoperative risk factors can be used to predict perioperative blood requir ements.