This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge t...This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.展开更多
Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emis...Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network.展开更多
High-quality data play a paramount role in monitoring,control,and prediction of wastewater treatment process(WWTP)and can effectively ensure the efficient and stable operation of system.Missing values seriously degrad...High-quality data play a paramount role in monitoring,control,and prediction of wastewater treatment process(WWTP)and can effectively ensure the efficient and stable operation of system.Missing values seriously degrade the accuracy,reliability and completeness of the data quality due to network collapses,connection errors and data transformation failures.In these cases,it is infeasible to recover missing data depending on the correlation with other variables.To tackle this issue,a univariate imputation method(UIM)is proposed for WWTP integrating decomposition method and imputation algorithms.First,the seasonal-trend decomposition based on loess method is utilized to decompose the original time series into the seasonal,trend and remainder components to deal with the nonstationary characteristics of WWTP data.Second,the support vector regression is used to approximate the nonlinearity of the trend and remainder components respectively to provide estimates of its missing values.A self-similarity decomposition is conducted to fill the seasonal component based on its periodic pattern.Third,all the imputed results are merged to obtain the imputation result.Finally,six time series of WWTP are used to evaluate the imputation performance of the proposed UIM by comparing with existing seven methods based on two indicators.The experimental results illustrate that the proposed UIM is effective for WWTP time series under different missing ratios.Therefore,the proposed UIM is a promising method to impute WWTP time series.展开更多
Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a...Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.展开更多
In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the r...In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.展开更多
In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to ...In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.展开更多
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis...Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.展开更多
The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to ob...The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods.展开更多
Echo State Network(ESN) is a recurrent neural network with a large, randomly generated recurrent part called the dynamic reservoir. Only the output weights are modified during training. However, proper balancing of th...Echo State Network(ESN) is a recurrent neural network with a large, randomly generated recurrent part called the dynamic reservoir. Only the output weights are modified during training. However, proper balancing of the trade-off between the structure and performance for ESN remains a difficult task. In this paper, a structure optimized method for ESN based on contribution is proposed to simplify its network structure and improve its performance.First, we evaluate the contribution of reservoir neurons. Second, we present a pruning mechanism to remove the unimportant connection weights of reservoir neurons with low contribution. Finally, the new output weights are learned with the pseudo inverse method. The novel optimized ESN, named C-ESN, is tested on a Lorenz chaotic time-series prediction and an actual municipal sewage treatment system. The simulation results show that the C-ESN can have better prediction and generalization performance than ESN.展开更多
Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy b...Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy based on rule adaptive recurrent neural network(RARFNN)is proposed in this paper to control the dissolved oxygen(DO)concentration and nitrate nitrogen(SNo)concentration.The structure of the RARFNN is self-organized by a rule adaptive algorithm,and the rule adaptive algorithm considers the overall information processing ability of neural network.Furthermore,a stability analysis method is given to prove the convergence of the proposed RARFNN.Findings-By application in the control problem of wastewater treatment process(WWTP),results show that the proposed control method achieves better performance compared to other methods.Originality/value-The proposed on-line modeling and controlling method uses the RARFNN to model and control the dynamic WWTP.The RARFNN can adjust its structure and parameters according to the changes of biochemical reactions and pollutant concentrations.And,the rule adaptive mechanism considers the overall information processing ability judgment of the neural network,which can ensure that the neural network contains the information of the biochemical reactions.展开更多
基金the National Key Research and Development Program of China(2021ZD0112302)the National Natural Science Foundation of China(62222301,61890930-5,62021003)the Beijing Natural Science Foundation(JQ19013).
文摘This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.
基金the financial support from the National Natural Science Foundation of China(62021003,61890930-5,61903012,62073006)Beijing Natural Science Foundation(42130232)the National Key Research and Development Program of China(2021ZD0112301,2021ZD0112302)。
文摘Air pollution control poses a major problem in the implementation of municipal solid waste incineration(MSWI).Accurate prediction of nitrogen oxides(NO_(x))concentration plays an important role in efficient NO_(x)emission controlling.In this study,a modular long short-term memory(M-LSTM)network is developed to design an efficient prediction model for NO_(x)concentration.First,the fuzzy C means(FCM)algorithm is utilized to divide the task into several sub-tasks,aiming to realize the divide-and-conquer ability for complex task.Second,long short-term memory(LSTM)neural networks are applied to tackle corresponding sub-tasks,which can improve the prediction accuracy of the sub-networks.Third,a cooperative decision strategy is designed to guarantee the generalization performance during the testing or application stage.Finally,after being evaluated by a benchmark simulation,the proposed method is applied to a real MSWI process.And the experimental results demonstrate the considerable prediction ability of the M-LSTM network.
基金the National Key Research and Development Project(No.2018YFC1900800-5)the National Natural Science Foundation of China(Nos.61890930-5,61903010,6202100)+1 种基金the Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910005020)the Beijing Natural Science Foundation(No.KZ202110005009).
文摘High-quality data play a paramount role in monitoring,control,and prediction of wastewater treatment process(WWTP)and can effectively ensure the efficient and stable operation of system.Missing values seriously degrade the accuracy,reliability and completeness of the data quality due to network collapses,connection errors and data transformation failures.In these cases,it is infeasible to recover missing data depending on the correlation with other variables.To tackle this issue,a univariate imputation method(UIM)is proposed for WWTP integrating decomposition method and imputation algorithms.First,the seasonal-trend decomposition based on loess method is utilized to decompose the original time series into the seasonal,trend and remainder components to deal with the nonstationary characteristics of WWTP data.Second,the support vector regression is used to approximate the nonlinearity of the trend and remainder components respectively to provide estimates of its missing values.A self-similarity decomposition is conducted to fill the seasonal component based on its periodic pattern.Third,all the imputed results are merged to obtain the imputation result.Finally,six time series of WWTP are used to evaluate the imputation performance of the proposed UIM by comparing with existing seven methods based on two indicators.The experimental results illustrate that the proposed UIM is effective for WWTP time series under different missing ratios.Therefore,the proposed UIM is a promising method to impute WWTP time series.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(61225016)the State Key Program of National Natural Science of China(61533002)
文摘Modeling of energy consumption(EC) and effluent quality(EQ) are very essential problems that need to be solved for the multiobjective optimal control in the wastewater treatment process(WWTP). To address this issue, a density peaks-based adaptive fuzzy neural network(DP-AFNN) is proposed in this study. To obtain suitable fuzzy rules, a DP-based clustering method is applied to fit the cluster centers to process nonlinearity.The parameters of the extracted fuzzy rules are fine-tuned based on the improved Levenberg-Marquardt algorithm during the training process. Furthermore, the analysis of convergence is performed to guarantee the successful application of the DPAFNN. Finally, the proposed DP-AFNN is utilized to develop the models of EC and EQ in the WWTP. The experimental results show that the proposed DP-AFNN can achieve fast convergence speed and high prediction accuracy in comparison with some existing methods.
基金Supported by the National Natural Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘In wastewater treatment process(WWTP), the accurate and real-time monitoring values of key variables are crucial for the operational strategies. However, most of the existing methods have difficulty in obtaining the real-time values of some key variables in the process. In order to handle this issue, a data-driven intelligent monitoring system, using the soft sensor technique and data distribution service, is developed to monitor the concentrations of effluent total phosphorous(TP) and ammonia nitrogen(NH_4-N). In this intelligent monitoring system, a fuzzy neural network(FNN) is applied for designing the soft sensor model, and a principal component analysis(PCA) method is used to select the input variables of the soft sensor model. Moreover, data transfer software is exploited to insert the soft sensor technique to the supervisory control and data acquisition(SCADA) system. Finally, this proposed intelligent monitoring system is tested in several real plants to demonstrate the reliability and effectiveness of the monitoring performance.
文摘In this study, a multivariate local quadratic polynomial regression(MLQPR) method is proposed to design a model for the sludge volume index(SVI). In MLQPR, a quadratic polynomial regression function is established to describe the relationship between SVI and the relative variables, and the important terms of the quadratic polynomial regression function are determined by the significant test of the corresponding coefficients. Moreover, a local estimation method is introduced to adjust the weights of the quadratic polynomial regression function to improve the model accuracy. Finally, the proposed method is applied to predict the SVI values in a real wastewater treatment process(WWTP). The experimental results demonstrate that the proposed MLQPR method has faster testing speed and more accurate results than some existing methods.
基金supported by the National Natural Science Foundation of China(61890930-5,61533002,61603012)the Major Science and Technology Program for Water Pollution Control and Treatment of China(2018ZX07111005)+1 种基金the National Key Research and Development Project(2018YFC1900800-5)Beijing Municipal Education Commission Foundation(KM201710005025)
文摘Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors.
基金Supported by the National Science Foundation of China(61622301,61533002)Beijing Natural Science Foundation(4172005)Major National Science and Technology Project(2017ZX07104)
文摘The effluent total phosphorus(ETP) is an important parameter to evaluate the performance of wastewater treatment process(WWTP). In this study, a novel method, using a data-derived soft-sensor method, is proposed to obtain the reliable values of ETP online. First, a partial least square(PLS) method is introduced to select the related secondary variables of ETP based on the experimental data. Second, a radial basis function neural network(RBFNN) is developed to identify the relationship between the related secondary variables and ETP. This RBFNN easily optimizes the model parameters to improve the generalization ability of the soft-sensor. Finally, a monitoring system, based on the above PLS and RBFNN, named PLS-RBFNN-based soft-sensor system, is developed and tested in a real WWTP. Experimental results show that the proposed monitoring system can obtain the values of ETP online and own better predicting performance than some existing methods.
基金supported by the National Natural Science Foundation of China(No.61225016)the Key Project of National Natural Science Foundation of China(No.61533002)
文摘Echo State Network(ESN) is a recurrent neural network with a large, randomly generated recurrent part called the dynamic reservoir. Only the output weights are modified during training. However, proper balancing of the trade-off between the structure and performance for ESN remains a difficult task. In this paper, a structure optimized method for ESN based on contribution is proposed to simplify its network structure and improve its performance.First, we evaluate the contribution of reservoir neurons. Second, we present a pruning mechanism to remove the unimportant connection weights of reservoir neurons with low contribution. Finally, the new output weights are learned with the pseudo inverse method. The novel optimized ESN, named C-ESN, is tested on a Lorenz chaotic time-series prediction and an actual municipal sewage treatment system. The simulation results show that the C-ESN can have better prediction and generalization performance than ESN.
基金supported by the National Natural Science Foundation of China Grant Numbers(61622301,61533002)Beijing Municipal Education Commission Science and Technology Development Program Grant Numbers(KZ201410005002,201410005001)the PhD Programs Foundation of Ministry of Education of China Grant Number(20131103110016).
文摘Purpose-The purpose of this paper is to present an on-line modeling and controlling scheme based on the dynamic recurrent neural network for wastewater treatment system.Design/methodology/approach-A control strategy based on rule adaptive recurrent neural network(RARFNN)is proposed in this paper to control the dissolved oxygen(DO)concentration and nitrate nitrogen(SNo)concentration.The structure of the RARFNN is self-organized by a rule adaptive algorithm,and the rule adaptive algorithm considers the overall information processing ability of neural network.Furthermore,a stability analysis method is given to prove the convergence of the proposed RARFNN.Findings-By application in the control problem of wastewater treatment process(WWTP),results show that the proposed control method achieves better performance compared to other methods.Originality/value-The proposed on-line modeling and controlling method uses the RARFNN to model and control the dynamic WWTP.The RARFNN can adjust its structure and parameters according to the changes of biochemical reactions and pollutant concentrations.And,the rule adaptive mechanism considers the overall information processing ability judgment of the neural network,which can ensure that the neural network contains the information of the biochemical reactions.