Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t...Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.展开更多
In this Letter, we report on a novel architecture for a self-starting mode-locked figure-eight erbium-doped fiber laser using a loss-imbalanced nonlinear optical loop mirror(NOLM) with a bidirectional output coupler. ...In this Letter, we report on a novel architecture for a self-starting mode-locked figure-eight erbium-doped fiber laser using a loss-imbalanced nonlinear optical loop mirror(NOLM) with a bidirectional output coupler. An allpolarization-maintaining structure is adopted. A 2 × 2 optical coupler with a splitting ratio of 50:50 is used at the junction to form an NOLM. Another coupler with a splitting ratio of 10:90 is introduced at one end of the fiber loop. The 10:90 coupler plays two roles: power attenuator and bidirectional output coupler. This architecture can achieve both large modulation depth and good self-starting ability simultaneously. With this architecture,the self-starting mode-locking operation is achieved easily with pump power above the threshold. The clockwise and counter-clockwise mode-locked output powers are 10.1 and 10.3 mW, respectively, with the repetition rate of 3.63 MHz. The spectral bandwidths of the clockwise and counter-clockwise mode-locked output pulses are 7.4 and 2.9 nm, and the corresponding pulse widths of the direct outputs are 530.6 fs and 1.55 ps, respectively.展开更多
A self-starting simple structured dual-wavelength passively mode-locked(ML)erbium-doped fiber(EDF)laser is proposed in this Letter.An all-fiber ring cavity is adopted and a transmission-type semiconductor saturable ab...A self-starting simple structured dual-wavelength passively mode-locked(ML)erbium-doped fiber(EDF)laser is proposed in this Letter.An all-fiber ring cavity is adopted and a transmission-type semiconductor saturable absorber is used as modelocker.In this laser,there are two gain humps located at the 1530 nm region and the 1550 nm region,respectively.Along with the length of EDF increasing,the intensity of the hump at 1530 nm region is gradually suppressed because of the re-absorption of emission by the ground state.With the proper length of EDF,the gain intensities of two regions are very close.When the pump power is above the ML threshold,the self-starting dual-wavelength ML operation is achieved easily without manual adjustment.The two spectral peaks with close intensities are located at 1532 and 1552 nm,respectively.The effect of intracavity dispersion on the output spectrum is also experimentally demonstrated.展开更多
基金supported by the National Natural Science Foundation of China (No.92372123)the Natural Science Foundation of Guangdong Province (No.2022B1515020005)the Department of Science and Technology of Guangdong Province (No.2020B0101030005)
文摘Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs.
基金supported by the Key Project of Bureau of International Cooperation,Chinese Academy of Sciences(No.181811KYSB20160029)the Key Research Project of Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(No.QYZDY-SSWJSC008)
文摘In this Letter, we report on a novel architecture for a self-starting mode-locked figure-eight erbium-doped fiber laser using a loss-imbalanced nonlinear optical loop mirror(NOLM) with a bidirectional output coupler. An allpolarization-maintaining structure is adopted. A 2 × 2 optical coupler with a splitting ratio of 50:50 is used at the junction to form an NOLM. Another coupler with a splitting ratio of 10:90 is introduced at one end of the fiber loop. The 10:90 coupler plays two roles: power attenuator and bidirectional output coupler. This architecture can achieve both large modulation depth and good self-starting ability simultaneously. With this architecture,the self-starting mode-locking operation is achieved easily with pump power above the threshold. The clockwise and counter-clockwise mode-locked output powers are 10.1 and 10.3 mW, respectively, with the repetition rate of 3.63 MHz. The spectral bandwidths of the clockwise and counter-clockwise mode-locked output pulses are 7.4 and 2.9 nm, and the corresponding pulse widths of the direct outputs are 530.6 fs and 1.55 ps, respectively.
基金supported by the National Natural Science Foundation of China(NSFC)(Nos.61475162and 61377103)the Key Project of Bureau of International Co-operation,Chinese Academy of Sciences(No.181811KYSB20160029)the Key Research Project of Bureau of Frontier Sciences and Education,Chinese Academy of Sciences(No.QYZDY-SSW-JSC008)
文摘A self-starting simple structured dual-wavelength passively mode-locked(ML)erbium-doped fiber(EDF)laser is proposed in this Letter.An all-fiber ring cavity is adopted and a transmission-type semiconductor saturable absorber is used as modelocker.In this laser,there are two gain humps located at the 1530 nm region and the 1550 nm region,respectively.Along with the length of EDF increasing,the intensity of the hump at 1530 nm region is gradually suppressed because of the re-absorption of emission by the ground state.With the proper length of EDF,the gain intensities of two regions are very close.When the pump power is above the ML threshold,the self-starting dual-wavelength ML operation is achieved easily without manual adjustment.The two spectral peaks with close intensities are located at 1532 and 1552 nm,respectively.The effect of intracavity dispersion on the output spectrum is also experimentally demonstrated.