The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite grow...The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.展开更多
Metal tellurides(MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity a...Metal tellurides(MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates(K-polytellurides, K-pTe_(x)) are rarely mentioned. Herein,we propose a novel structural engineering strategy to confine ultrafine CoTe_(2) nanodots in hierarchical nanogrid-in-nanofiber carbon substrates(CoTe_(2)@NC@NSPCNFs) for smooth immobilization of K-pTe_(x) and highly reversible conversion of CoTe_(2) by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTe_(x)(K_(5)Te_(3) and K_(2)Te), as well as verifying the robust physical barrier and the strong chemisorption of K_(5)Te_(3) and K_(2)Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTe_(x), provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights(3500 cycles at 2.0 A g^(-1)). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTe_(x) in the design of ultralong-cycling MTe anodes for advanced PIBs.展开更多
Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions ...Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions insertion/extraction,resulting in poor cycling stability.Herein,a pomegranate-inspired porous carbon shell wrapped heterogeneous SnSe/ZnSe composite(SnSe/ZnSe@C)is exquisitely designed and fabricated through electrostatic spraying followed by high-temperature selenization.The polyacrylonitrile-derived carbon shell acts as an adhesive to link the porous cubic SnSe/ZnSe and form highly interconnected microcircuits to improve the electron/ion transfer efficiency and inhibit the bulk volume change of internal metallic selenide nanoparticles and polyselenides dissolution during repeated cycling.Moreover,the abundant heterostructure interface of SnSe/ZnSe further significantly accelerates the electrons/ions transport.As a result,the as-prepared SnSe/ZnSe@C electrode exhibits a high specific capacity(508.3 m Ah g^(-1)at 0.05 A g^(-1)),excellent rate performance(177.8 m Ah g^(-1)at 10.0 A g^(-1)),and remarkable cycling stability(195.9 m Ah g^(-1)after 10,000 cycles at 5.0 A g^(-1)).Furthermore,in-situ Xray diffraction(XRD)/Raman,ex-situ transmission electron microscopy,and kinetic analysis clearly reveal a four-step electrochemical reaction process and battery-capacitor dual-mode sodium storage mechanism.This work provides a new perspective for developing commercial SIBs anode materials with high capacity and long lifespan.展开更多
To date,lithium-ion batteries are becoming increasingly significant in the application of portable devices and electrical vehicles,and revolutionary progress in theoretical research and industrial application has been...To date,lithium-ion batteries are becoming increasingly significant in the application of portable devices and electrical vehicles,and revolutionary progress in theoretical research and industrial application has been achieved.However,the commercial polyolefin separators with unsatisfying electrolytes affinity and poor thermal stability have extremely restricted the further application of lithium-ion batteries,especially in the high-temperature fields.In this work,magnetron sputtering deposition technique is employed to modify the commercial polyimide separator by coating silicon nitride on both sides.Magnetron sputtering deposition modified polyimide(MSD-PI)composite separator shows high thermal stability and ionic conductivity.More importantly,compared with the cells using Celgard separator,the cells with MSD-PI separator exhibit superior electrochemical performance,especially long-term cycle performance under high temperature environment,owing to the high thermal conductivity of surface Si3 N4 particles.Hence,lithium-ion batteries with MSD-PI separator are capable of improving thermal safety and capacity retention,which demonstrates that magnetron sputtering deposition technique could be regarded as a promising strategy to develop advanced organic/inorganic composite separators for high-temperature lithium-ion batteries.展开更多
Experimental researches on adsorptive capacity of activated alumina, silica sand and anthracite coal for phosphorus were conducted. Results showed that performances of three filter media were all in line with Langmuir...Experimental researches on adsorptive capacity of activated alumina, silica sand and anthracite coal for phosphorus were conducted. Results showed that performances of three filter media were all in line with Langmuir isotherm, and activated alumina adsorptive performance was much better than silica sand and an-thracite coal for phosphorus removal. The adsorptive capacity of activated alumina, silica sand and anthracite coal for phosphorus was 3333μg/g, 49μg/g and 100μg/g respectively. Activated alumina displayed adsorp-tive function well for phosphorus, because its inner porosity, specific surface area and surface isoelectric pH value were all higher than those of other two filter media. While activated alumina was used as filter material in water treatment process, phosphorus would be removed strongly because of adsorptive characteristic of activated alumina.展开更多
That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. Th...That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. This study conducted the experiments of phosphorus removal by three coagulants including aluminum chloride, aluminum sulfate and poly aluminum chloride. The results indicated that the poly aluminum chloride is the preferred one that could remove phosphorus up to 80%, followed by aluminum chloride and aluminum sulfate. The lowest proportion of aluminum quality to phosphorus quality is 63 as using poly aluminum chloride, followed by aluminum chloride and aluminum sulfate. It is suggested that the poly aluminum chloride should be the best option to remove phosphorus in water plant.展开更多
In this work,we have successfully prepared a novel separator modified with N,S co-doped carbon framework(named NSPCF)with confined CoS_(2) nanoparticles and rooted carbon nanotubes material(named NSPCF@CoS_(2))to appl...In this work,we have successfully prepared a novel separator modified with N,S co-doped carbon framework(named NSPCF)with confined CoS_(2) nanoparticles and rooted carbon nanotubes material(named NSPCF@CoS_(2))to apply for high-performance Lithium-Sulfur batteries(Li-S batteries).Robust carbon structure with large specific surface can act as a physical barrier and possess physical adsorption effect on lithium polysulfides(LiPSs).In addition,highly-conductive carbon can improve integral conductivity,leading to the fast charge transport and reaction kinetics.Also,doping heteroatoms could form more active sites to adsorb LiPSs strongly so that modified separator could inhibit the shuttle effect effectively.Moreover,the presence of CoS_(2) further enhances the ability of modified separator to trap LiPSs owing to the Lewis acid-base action.As a result,the NSPCF@CoS_(2)@C-150 battery can deliver initial discharge capacities of 863.0,776.2,649.1 and 489.4 mAh g^(-1) at 0.1,0.5,1 and 2C with a high sulfur loading of 2.04 mg cm^(-2),respectively.Notably,when turning the current density back to 0.1 C,its discharge capacity can recover to 1008.7 mAh g^(-1).In addition,the modified separators exhibit outstanding capacities to restrain the growth of lithium dendrites.It is noteworthy that the flame retardant performances of Li-S batteries are improved dramatically owing to the novel structures of modified separators.This rationally designed separator endows Li-S batteries with higher safety and excellent electrochemical performances,providing a feasible strategy for practical application of Li-S batteries.展开更多
A water-soluble polysaccharide from abalone muscle(AMPP)was isolated.The contents of carbohydrate,protein,uronic acid,and sulfate in AMPP were 83.5%,0.5%,2.7%,and 2.6%,respectively.High-performance liquid chromatograp...A water-soluble polysaccharide from abalone muscle(AMPP)was isolated.The contents of carbohydrate,protein,uronic acid,and sulfate in AMPP were 83.5%,0.5%,2.7%,and 2.6%,respectively.High-performance liquid chromatography analysis indicated that AMPP was homogeneous and had an average molecular weight of approximately 3.2 kDa.The main monosaccharides of AMPP were glucose(Glc)and mannose with a molar ratio of 99.7:0.3.The structural characteristics of AMPP were elucidated through methylation analysis,Fourier transform infrared spectroscopy,and nuclear magnetic resonance spectroscopy.The linkages of AMPP consisted of terminal,1,4-linked,1,6-linked,and 1,4,6-linked Glcp with a molar ratio of 3.1:7.2:1.0:2.5.In one repeat unit of the proposed AMPP structure,the backbone chain was composed of eight 1→4 glycosidic bonds and one 1→6 glycosidic bond,with three branch chains linked by 1→6 glycosidic bond.In addition,AMPP was found to possess potent immunostimulatory activity via rising phagocytosis of RAW264.7 cells and promoting secretion of TNF-α.展开更多
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive, currently untreatable and ultimately fatal ataxic disorder that belongs to the group of neurological disorders known as CAG-repeat or...Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive, currently untreatable and ultimately fatal ataxic disorder that belongs to the group of neurological disorders known as CAG-repeat or polyglutamine diseases. Here, we present the first prenatal diagnosis of SCA3/MJD in China's Mainland in a woman who was known to carry an expanded CAG-trinucleotide repeat in the MJD1 gene. After evaluating motivation and psychological tolerance of the couple, amniocentesis was performed after 14 weeks of gestation. Polymerase chain reactions followed by T-vector cloning and direct sequencing were employed to evaluate the CAG-repeat number of the fetal MJD1 gene. We identified a truncated CAG expansion of 78 repeats in the MJD1 gene of the fetus compared with 81 repeats in his mother.展开更多
We focused on the need for the phosphorus removal in water plant process. As for surface water plant, the enhancement of phosphorus removal in purification process can raise the biological stability of effluent potabl...We focused on the need for the phosphorus removal in water plant process. As for surface water plant, the enhancement of phosphorus removal in purification process can raise the biological stability of effluent potable water. This study conducted the effect of two water treatment processes for phosphorus removal, including the PAC + AAL (the treatment process using poly aluminum chloride and activated aluminum oxide) and PFS + AAL (the treatment process using poly ferric sulfate and activated aluminum oxide). The aim is to use the adsorption capacity of activated aluminum oxide to increase the removal of phosphorus in filtration process. The result showed that the two processes both can remove the phosphorus concentration to reach below 10 μg/L, and the PAC + AAL is the better process.展开更多
Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade.This work reported a synthesis of isosorbide-derived polyphosphonate(PICPP)as an anti-flammable agent for poly...Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade.This work reported a synthesis of isosorbide-derived polyphosphonate(PICPP)as an anti-flammable agent for poly(lactic acid)(PLA).The presence of PICPP notably declined the storage modulus of PLA/PICPP owing to the declined molecular weight of PLA catalyzed by the presence of PICPP.PLA and PLA/PICPP thermally degraded in one stage under either air or nitrogen atmosphere.With increasing the amount of PICPP,the onset thermal decomposition temperature of PLA/PICPP was decreased gradually,owing to the earlier decomposition of PICPP.With only 10 wt%of PICPP,PLA/PICPP-10 achieved a high limiting oxygen index of 30.0%and UL-94 V-0 classification,manifesting that PICPP was an efficient anti-flammable agent for PLA.The inclusion of 15 wt%PICPP also caused 33%and 16%decline in PHRR and THR of PLA,respectively.TG-IR results clarified that PLA/PICPP produced the less typical pyrolysis products especially flammable carbonyls than PLA,which may account for the suppressed PHRR and THR values of PLA/PICPP.展开更多
Objective: To investigate the antitumor activity of different combination regimens to human breast cancer xeno-graft (MCF-7) transplanted in nude mice and the effects on the expression of PCNA, and to evaluate the val...Objective: To investigate the antitumor activity of different combination regimens to human breast cancer xeno-graft (MCF-7) transplanted in nude mice and the effects on the expression of PCNA, and to evaluate the value of PCNA as predictive factor for the response of chemotherapy and individualized treatment. Methods: (1) 88 nude mice models of human breast cancer xenograft (MCF-7) were established, and then were randomly divided into control group and 10 chemotherapy groups (each group, n = 8). Among them, the mice of 5 chemotherapy groups were treated intraperitoneally/orally by 5 com-bination chemotherapy regimens (CMF, CAF, NP, TP, Xeloda) respectively at 1/3 LD10 dosage schedule (dose lethal to 10% of the mice), and that in another 5 chemotherapy groups were treated at 2/3 LD10 dosage schedule. Control animals were administered intraperitoneally with normal saline. (2) The body weight of nude mice and transplanted tumor growth were ob-served and recorded, then inhibition rate of tumor growth was calculated. (3) The pathological features of transplanted tumor were studied under microscope. The expression of proliferating cell nuclear antigen (PCNA) was comparatively studied in chemotherapy group and control group by SP immunohistochemical method and flow cytometry analysis. Results: (1) Body weight, tumor weight and inhibition rate of tumor growth of athymic mice bearing cancer: Body weights and tumor weights of nude mice in every 2/3 LD10 chemotherapy group were significantly lower than those of the control group (P < 0.05), and the inhibition rates of tumor growth were 83.1%, 75.5%, 84.6%, 87.9% and 91.0%, respectively. Body weights of athymic mice in every 1/3 LD10 chemotherapy group were lower than that of the control (P < 0.05). The results showed that the 2/3 LD10 chemotherapy groups could reflect the effect of combination chemotherapy on the nude mice and the clinical dependability was better. So the data of 2/3 LD10 chemotherapy groups were appropriated for successive study. (2) Immunohistochemical studies: The expressions of PCNA in every chemotherapy group were significantly lower than that of the control (P < 0.05). Moreover, the expression of PCNA in NP group was significantly lower than those of CMF, CAF, TP and Xeloda groups (P < 0.05), while the expressions of TP and Xeloda groups were significantly lower than those of CMF and CAF groups (P < 0.05). (3) FCM analysis: FI values of PCNA in every chemotherapy group were significantly lower than that of the control (P < 0.05). FI values of PCNA in TP and Xeloda groups were significantly lower than those of CMF and CAF groups (P < 0.05), while the value of NP group was significantly lower than that of CMF group (P < 0.05). (4) Relationship between PCNA expression and pathologic response: The expression of PCNA was significantly correlated with pathological therapeutic response of transplanted breast carcinoma (P = 0.001). Conclusion: In vivo chemosensitivity testing with 2/3 LD10 dosage combinations in nude mice bearing cancer can reflect the effects of chemotherapeutics and affects of organism exactly. Various chemotherapy regimens all can decrease the expression of PCNA in breast cancer. The PCNA can be regarded as the factor to judge the response to chemotherapy, and it become possibly one of the prospective factors in the selection of chemotherapy regimen and play a rule in individualized therapy in the clinic.展开更多
[Objective]To clone araC gene of Vibrio alginolyticus HY9901 strain,and analyze bioinformatics.[Methods]the whole genome sequence of Vibrio alginolyticus on GenBank was used to design specific primers.According to the...[Objective]To clone araC gene of Vibrio alginolyticus HY9901 strain,and analyze bioinformatics.[Methods]the whole genome sequence of Vibrio alginolyticus on GenBank was used to design specific primers.According to the principle of PCR amplification sequence,the target gene araC was amplified,and then the sequence was further analyzed by bioinformatics method to establish the phylogenetic tree of araC gene and its corresponding subunit three-dimensional structure model.[Results]Sequence analysis revealed araC gene is 711 bp and encodes a putative protein of 236 amino acids.The predicted molecular mass of AraC was 26.92 ku.Using Signal P 4.0 and TMHMM Server 2.0 software for analysis,it was predicted that the AraC protein did not contain a signal peptide or a transmembranous region.The AraC protein had two cAMP and cGMP dependent protein kinase phosphorylation site,five protein kinase C phosphorylation sites,three casein kinase II phosphorylation sites,one prenyl group binding site(CAAX box)and five microbodies C-terminal targeting signal.The predicted results of protein subcellular localization showed that AraC was located in the mitochondria,nucleus and cytoplasm.Its protein is unstable and hydrophilic.The AraC protein is a transcriptional regulatory protein which belongs to HTH_18 superfamily.According to the prediction,secondary structure:a-helix(Alpha helix)accounted for 52.12%,random coil(31.78%),extended strand(11.02%),b-fold(Beta turn)accounted for 5.08%.V.alginolyticus,Vibrio parahaemolyticus and Vibrio palustris were clustered together,which implies that the genetic relationship between these three species was the closest.展开更多
Objective:This paper aims to explore the effect of individualized nursing intervention on patients with active tuberculosis(ATB)and latent tuberculosis infection(LTBI).Methods:The nursing study started in January 2020...Objective:This paper aims to explore the effect of individualized nursing intervention on patients with active tuberculosis(ATB)and latent tuberculosis infection(LTBI).Methods:The nursing study started in January 2020 and ended in January 2023.A total of 60 patients with ATB and LTBI were included,and they were divided into two groups according to the intervention schemes selected for control testing,each with 30 cases.The intervention program selected for group A was routine care,and for group B was individualized nursing.The proportion of adverse reactions,changes in the level of lung items,self-management outcomes and satisfaction were evaluated and compared.Results:After evaluating the proportion of adverse reactions,the total proportion of ATB and LTBI in group B was lower than that in group A(P<0.05).Based on the evaluation and testing of the expiratory flow(EF),expiratory volume(EV),and vital capacity(VC)after the intervention,these levels in group B showed higher outcomes than those in group A(P<0.05).The scores in terms of living habits,sleep,diet,and compliance in group B were higher than those in group A(P<0.05).The total proportion of the satisfaction of ATB and LTBI patients in group B was higher than that in group A(P<0.05).Conclusion:After the intervention of individualized nursing measures in patients with ATB and LTBI,it was found that it can not only play a positive role in the prevention and control of adverse reactions,but also improve their lung function,and promote their self-management,with good satisfaction level,thus it has high research and clinical application values.展开更多
Amyotrophic lateral sclerosis(ALS)is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons,and it demonstrates high clinical heterogeneity and complex genetic architecture.A vari...Amyotrophic lateral sclerosis(ALS)is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons,and it demonstrates high clinical heterogeneity and complex genetic architecture.A variation within TRMT2B(c.1356G>T;p.K452N)was identified to be associated with ALS in a family comprising two patients with juvenile ALS(JALS).Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS,and three more variants were identified in a public ALS database including 3317 patients with ALS.A decreased number of mitochondria,swollen mitochondria,lower expression of ND1,decreased mitochondrial complex I activities,lower mitochondrial aerobic respiration,and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells.Further,TRMT2B variations overexpression cells also displayed decreased ND1.In conclusion,a novel JALS-associated gene called TRMT2B was identified,thus broadening the clinical and genetic spectrum of ALS.展开更多
Owing to unprecedented merits such as high theoretical capacity,superior energy density and low cost,lithium-sulfur batteries(LSBs)show a bright future both in scientific and industrial areas.Whereas,the inherent issu...Owing to unprecedented merits such as high theoretical capacity,superior energy density and low cost,lithium-sulfur batteries(LSBs)show a bright future both in scientific and industrial areas.Whereas,the inherent issues,including highly insulating character,undesired shuttle behavior and lithium dendrites growth,are seriously impeding its practical usage.Here,a metal-organic-frameworks(MOFs)derived N,S co-doped carbon nanotube hollow architecture confining with CoS_(2) nanoparticles(CoS_(2)/NSCNHF)modified separator is designed to surmount these obstacles.Compared with Celgard separator,this designed separator shows obviously enhanced flame retardancy,giving 73.1%and 53.0%reductions in peak heat release rate and total heat release,separately.Concretely,its hollow structure,conductive feature,electrocatalytic activity and Lewis acid-base interaction enable the efficient inhibition on shuttle behavior as well as boost in polysulfides conversion kinetics.The cell with modified separator delivers a high discharge capacity of 1,284.5 mAh·g^(−1).After running for 100 cycles,a discharge capacity of 661.3 mAh·g^(−1) is remained.Markedly,the suppression on lithium dendrites growth is also observed,manifesting the enhanced battery safety.Overall,this work may shed light on the effective usage of MOFs-derived hierarchical composite in achieving LSBs with high electrochemical performance as well as safety.展开更多
Copper indium thiophosphate,CuInP_(2)S_(6),has attracted much attention in recent years due to its van der Waals layered structure and robust ferroelectricity at room temperature.In this review,we aim to give an overv...Copper indium thiophosphate,CuInP_(2)S_(6),has attracted much attention in recent years due to its van der Waals layered structure and robust ferroelectricity at room temperature.In this review,we aim to give an overview of the various properties of CuInP_(2)S_(6),covering structural,ferroelectric,dielectric,piezoelectric and transport properties,as well as its potential applications.We also highlight the remaining questions and possible research directions related to this fascinating material and other compounds of the same family.展开更多
Realization of functional flexible artificial synapse is a significant step toward neuromorphic computing.Herein,a flexible artificial synapse based on ferroelectric tunnel junctions(FTJs)is demonstrated,using BiFeO_(...Realization of functional flexible artificial synapse is a significant step toward neuromorphic computing.Herein,a flexible artificial synapse based on ferroelectric tunnel junctions(FTJs)is demonstrated,using BiFeO_(3)(BFO)thin film as the functional layer.The inorganic single crystalline FTJs grown on rigid perovskite substrates at high temperatures are integrated with the flexible plastic substrates,by using the water-soluble Sr_(3)Al_(2)O_(6)(SAO)as the sacrificial layer and the following transfer.The transferred freestanding BFO thin film exhibits excellent ferroelectric properties.Moreover,the memristive properties and the brain-like synaptic learning performance of the flexible FTJs are investigated.The results show that multilevel resistance states were maintained well of the flexible artificial synapse,together with their stable synaptic learning properties.Our work indicates the promising opportunity of ferroelectric thin film based flexible synapse used in the future neuromorphic computing system.展开更多
Background:Amyotrophic lateral sclerosis(ALS)is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord.As in many other neurodegenerative disorders,t...Background:Amyotrophic lateral sclerosis(ALS)is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord.As in many other neurodegenerative disorders,the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport.Notably,sen-sory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2(HSAN2)and spastic paraplegia 30(SPG30)share several causative genes with ALS,as well as having common clinical phenotypes.KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors(SVPs)and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30.Methods:Here,we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS.Results:We identified rare damage variants(RDVs)in the KIF1A gene associated with ALS and delineated the clini-cal characteristics of ALS patients with KIF1A RDVs.Clinically,these patients tended to exhibit sensory disturbance.Interestingly,the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein.Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A,VAMP2,and synaptophysin.Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor.Conclusions:Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS,indicating KIF1A as an important player in the oligogenic scenario of ALS.展开更多
基金financially supported by the National Natural Science Foundation of China(52104197)Hongkong Scholar Program(XJ2022022)+5 种基金National Science Foundation for Post-doctoral Scientists of China(2021M691549,2021M703082)National Natural Science Foundation of China(52272396,52306090)Jiangsu Provincial Double-Innovation Doctor Program(JSSCBS20210402)Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJB620001)The Open Fund of the State Key Laboratory of Fire Science(SKLFS)Program(HZ2022-KF04)Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX22-0457)。
文摘The unparalleled energy density has granted lithium-sulfur batteries(LSBs)with attractive usages.Unfortunately,LSBs still face some unsurpassed challenges in industrialization,with polysulfides shuttling,dendrite growth and thermal hazard as the major problems triggering the cycling instability and low safety.With the merit of convenience,the method of designing functional separator has been adapted.Concretely,the carbon aerogel confined with CoS_(2)(CoS_(2)-NCA)is constructed and coated on Celgard separator surface,acquiring CoS_(2)-NCA modified separator(CoS_(2)-NCA@C),which holds the promoted electrolyte affinity and flame retardance.As revealed,CoS_(2)-NCA@C cell gives a high discharge capacity 1536.9 mAh/g at 1st cycle,much higher than that of Celgard cell(987.1 mAh/g).Moreover,the thermal runaway triggering time is dramatically prolonged by 777.4 min,corroborating the promoted thermal safety of cell.Noticeably,the higher coulombic efficiency stability and lower overpotential jointly confirm the efficacy of CoS_(2)-NCA@C in suppressing the lithium dendrite growth.Overall,this work can provide useful inspirations for designing functional separator,coping with the vexing issues of LSBs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51920105004, 52102223, 52002081)。
文摘Metal tellurides(MTes) are highly attractive as promising anodes for high-performance potassium-ion batteries. The capacity attenuation of most reported MTe anodes is attributed to their poor electrical conductivity and large volume variation. The evolution mechanisms, dissolution properties, and corresponding manipulation strategies of intermediates(K-polytellurides, K-pTe_(x)) are rarely mentioned. Herein,we propose a novel structural engineering strategy to confine ultrafine CoTe_(2) nanodots in hierarchical nanogrid-in-nanofiber carbon substrates(CoTe_(2)@NC@NSPCNFs) for smooth immobilization of K-pTe_(x) and highly reversible conversion of CoTe_(2) by manipulating the intense electrochemical reaction process. Various in situ/ex situ techniques and density functional theory calculations have been performed to clarify the formation, transformation, and dissolution of K-pTe_(x)(K_(5)Te_(3) and K_(2)Te), as well as verifying the robust physical barrier and the strong chemisorption of K_(5)Te_(3) and K_(2)Te on S, N co-doped dual-type carbon substrates. Additionally, the hierarchical nanogrid-in-nanofiber nanostructure increases the chemical anchoring sites for K-pTe_(x), provides sufficient volume buffer space, and constructs highly interconnected conductive microcircuits, further propelling the battery reaction to new heights(3500 cycles at 2.0 A g^(-1)). Furthermore, the full cells further demonstrate the potential for practical applications. This work provides new insights into manipulating K-pTe_(x) in the design of ultralong-cycling MTe anodes for advanced PIBs.
基金support from the National Natural Science Foundation of China(51920105004,52102223)the Basic and Applied Basic Research Fund Project of Guangdong Province(2020A1515110401)。
文摘Tin selenide(SnSe)is considered as a potential anode for sodium-ion batteries(SIBs)owing to its high theoretical specific capacity.Unfortunately,it suffers from drastic volume expansion/contraction during sodium ions insertion/extraction,resulting in poor cycling stability.Herein,a pomegranate-inspired porous carbon shell wrapped heterogeneous SnSe/ZnSe composite(SnSe/ZnSe@C)is exquisitely designed and fabricated through electrostatic spraying followed by high-temperature selenization.The polyacrylonitrile-derived carbon shell acts as an adhesive to link the porous cubic SnSe/ZnSe and form highly interconnected microcircuits to improve the electron/ion transfer efficiency and inhibit the bulk volume change of internal metallic selenide nanoparticles and polyselenides dissolution during repeated cycling.Moreover,the abundant heterostructure interface of SnSe/ZnSe further significantly accelerates the electrons/ions transport.As a result,the as-prepared SnSe/ZnSe@C electrode exhibits a high specific capacity(508.3 m Ah g^(-1)at 0.05 A g^(-1)),excellent rate performance(177.8 m Ah g^(-1)at 10.0 A g^(-1)),and remarkable cycling stability(195.9 m Ah g^(-1)after 10,000 cycles at 5.0 A g^(-1)).Furthermore,in-situ Xray diffraction(XRD)/Raman,ex-situ transmission electron microscopy,and kinetic analysis clearly reveal a four-step electrochemical reaction process and battery-capacitor dual-mode sodium storage mechanism.This work provides a new perspective for developing commercial SIBs anode materials with high capacity and long lifespan.
基金supported by the National Natural Science Foundation of China(51704269 and 51573173)Fundamental Research Funds for the Central Universities(WK2320000037)。
文摘To date,lithium-ion batteries are becoming increasingly significant in the application of portable devices and electrical vehicles,and revolutionary progress in theoretical research and industrial application has been achieved.However,the commercial polyolefin separators with unsatisfying electrolytes affinity and poor thermal stability have extremely restricted the further application of lithium-ion batteries,especially in the high-temperature fields.In this work,magnetron sputtering deposition technique is employed to modify the commercial polyimide separator by coating silicon nitride on both sides.Magnetron sputtering deposition modified polyimide(MSD-PI)composite separator shows high thermal stability and ionic conductivity.More importantly,compared with the cells using Celgard separator,the cells with MSD-PI separator exhibit superior electrochemical performance,especially long-term cycle performance under high temperature environment,owing to the high thermal conductivity of surface Si3 N4 particles.Hence,lithium-ion batteries with MSD-PI separator are capable of improving thermal safety and capacity retention,which demonstrates that magnetron sputtering deposition technique could be regarded as a promising strategy to develop advanced organic/inorganic composite separators for high-temperature lithium-ion batteries.
文摘Experimental researches on adsorptive capacity of activated alumina, silica sand and anthracite coal for phosphorus were conducted. Results showed that performances of three filter media were all in line with Langmuir isotherm, and activated alumina adsorptive performance was much better than silica sand and an-thracite coal for phosphorus removal. The adsorptive capacity of activated alumina, silica sand and anthracite coal for phosphorus was 3333μg/g, 49μg/g and 100μg/g respectively. Activated alumina displayed adsorp-tive function well for phosphorus, because its inner porosity, specific surface area and surface isoelectric pH value were all higher than those of other two filter media. While activated alumina was used as filter material in water treatment process, phosphorus would be removed strongly because of adsorptive characteristic of activated alumina.
文摘That phosphorus has been removed more from water in purification process can result in higher grade of biological stability of the effluent tap water, especially for the water plant when using surface water source. This study conducted the experiments of phosphorus removal by three coagulants including aluminum chloride, aluminum sulfate and poly aluminum chloride. The results indicated that the poly aluminum chloride is the preferred one that could remove phosphorus up to 80%, followed by aluminum chloride and aluminum sulfate. The lowest proportion of aluminum quality to phosphorus quality is 63 as using poly aluminum chloride, followed by aluminum chloride and aluminum sulfate. It is suggested that the poly aluminum chloride should be the best option to remove phosphorus in water plant.
基金supported by the National Natural Science Foundation of China(51704269)the Fundamental Research Funds for the Central Universities(WK2320000041).
文摘In this work,we have successfully prepared a novel separator modified with N,S co-doped carbon framework(named NSPCF)with confined CoS_(2) nanoparticles and rooted carbon nanotubes material(named NSPCF@CoS_(2))to apply for high-performance Lithium-Sulfur batteries(Li-S batteries).Robust carbon structure with large specific surface can act as a physical barrier and possess physical adsorption effect on lithium polysulfides(LiPSs).In addition,highly-conductive carbon can improve integral conductivity,leading to the fast charge transport and reaction kinetics.Also,doping heteroatoms could form more active sites to adsorb LiPSs strongly so that modified separator could inhibit the shuttle effect effectively.Moreover,the presence of CoS_(2) further enhances the ability of modified separator to trap LiPSs owing to the Lewis acid-base action.As a result,the NSPCF@CoS_(2)@C-150 battery can deliver initial discharge capacities of 863.0,776.2,649.1 and 489.4 mAh g^(-1) at 0.1,0.5,1 and 2C with a high sulfur loading of 2.04 mg cm^(-2),respectively.Notably,when turning the current density back to 0.1 C,its discharge capacity can recover to 1008.7 mAh g^(-1).In addition,the modified separators exhibit outstanding capacities to restrain the growth of lithium dendrites.It is noteworthy that the flame retardant performances of Li-S batteries are improved dramatically owing to the novel structures of modified separators.This rationally designed separator endows Li-S batteries with higher safety and excellent electrochemical performances,providing a feasible strategy for practical application of Li-S batteries.
基金financial support received from the National Key R&D Program of China(2021YFD2100200/2021Y FD2100202)National Natural Science Fund(31571835),Fujian Key Project of Natural Science Foundation(2019J02013)the Opening Project of Fujian Provincial Engineering Technology Research Center of Marine Functional Food(Z820239)。
文摘A water-soluble polysaccharide from abalone muscle(AMPP)was isolated.The contents of carbohydrate,protein,uronic acid,and sulfate in AMPP were 83.5%,0.5%,2.7%,and 2.6%,respectively.High-performance liquid chromatography analysis indicated that AMPP was homogeneous and had an average molecular weight of approximately 3.2 kDa.The main monosaccharides of AMPP were glucose(Glc)and mannose with a molar ratio of 99.7:0.3.The structural characteristics of AMPP were elucidated through methylation analysis,Fourier transform infrared spectroscopy,and nuclear magnetic resonance spectroscopy.The linkages of AMPP consisted of terminal,1,4-linked,1,6-linked,and 1,4,6-linked Glcp with a molar ratio of 3.1:7.2:1.0:2.5.In one repeat unit of the proposed AMPP structure,the backbone chain was composed of eight 1→4 glycosidic bonds and one 1→6 glycosidic bond,with three branch chains linked by 1→6 glycosidic bond.In addition,AMPP was found to possess potent immunostimulatory activity via rising phagocytosis of RAW264.7 cells and promoting secretion of TNF-α.
基金grants from the National Science and Technology Pillar Program in the Eleventh Five-year Plan Period, No. 2006BAI05A07the Major State Basic Research Development Program of China (973 Program), No. 2006cb500700+5 种基金the National Key Technologies Research and Development Program of China, No. 2004BA720A03the National Natural Science Foundation of China, No. 30871354, 30710303061 and 30470619the Key Project in the Natural Science Foundation of Hunan Province, No. 08JJ3048the Natural Science Foundation of Hunan Province, No. 11JJ5071the Science and Technology Planning Project of Hunan Province, No. 2009SK3172the Graduate Degree Thesis Innovation Foundation of Central South University, No. 2008yb030
文摘Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a progressive, currently untreatable and ultimately fatal ataxic disorder that belongs to the group of neurological disorders known as CAG-repeat or polyglutamine diseases. Here, we present the first prenatal diagnosis of SCA3/MJD in China's Mainland in a woman who was known to carry an expanded CAG-trinucleotide repeat in the MJD1 gene. After evaluating motivation and psychological tolerance of the couple, amniocentesis was performed after 14 weeks of gestation. Polymerase chain reactions followed by T-vector cloning and direct sequencing were employed to evaluate the CAG-repeat number of the fetal MJD1 gene. We identified a truncated CAG expansion of 78 repeats in the MJD1 gene of the fetus compared with 81 repeats in his mother.
文摘We focused on the need for the phosphorus removal in water plant process. As for surface water plant, the enhancement of phosphorus removal in purification process can raise the biological stability of effluent potable water. This study conducted the effect of two water treatment processes for phosphorus removal, including the PAC + AAL (the treatment process using poly aluminum chloride and activated aluminum oxide) and PFS + AAL (the treatment process using poly ferric sulfate and activated aluminum oxide). The aim is to use the adsorption capacity of activated aluminum oxide to increase the removal of phosphorus in filtration process. The result showed that the two processes both can remove the phosphorus concentration to reach below 10 μg/L, and the PAC + AAL is the better process.
基金The work was financially supported by the Hong Kong Scholars Program(Grant No.XJ2020003)the Basic Research Program of Jiangnan University(JUSRP121029).
文摘Fabrication of flame retardants from renewable biomass has aroused extensive interest over the past decade.This work reported a synthesis of isosorbide-derived polyphosphonate(PICPP)as an anti-flammable agent for poly(lactic acid)(PLA).The presence of PICPP notably declined the storage modulus of PLA/PICPP owing to the declined molecular weight of PLA catalyzed by the presence of PICPP.PLA and PLA/PICPP thermally degraded in one stage under either air or nitrogen atmosphere.With increasing the amount of PICPP,the onset thermal decomposition temperature of PLA/PICPP was decreased gradually,owing to the earlier decomposition of PICPP.With only 10 wt%of PICPP,PLA/PICPP-10 achieved a high limiting oxygen index of 30.0%and UL-94 V-0 classification,manifesting that PICPP was an efficient anti-flammable agent for PLA.The inclusion of 15 wt%PICPP also caused 33%and 16%decline in PHRR and THR of PLA,respectively.TG-IR results clarified that PLA/PICPP produced the less typical pyrolysis products especially flammable carbonyls than PLA,which may account for the suppressed PHRR and THR values of PLA/PICPP.
文摘Objective: To investigate the antitumor activity of different combination regimens to human breast cancer xeno-graft (MCF-7) transplanted in nude mice and the effects on the expression of PCNA, and to evaluate the value of PCNA as predictive factor for the response of chemotherapy and individualized treatment. Methods: (1) 88 nude mice models of human breast cancer xenograft (MCF-7) were established, and then were randomly divided into control group and 10 chemotherapy groups (each group, n = 8). Among them, the mice of 5 chemotherapy groups were treated intraperitoneally/orally by 5 com-bination chemotherapy regimens (CMF, CAF, NP, TP, Xeloda) respectively at 1/3 LD10 dosage schedule (dose lethal to 10% of the mice), and that in another 5 chemotherapy groups were treated at 2/3 LD10 dosage schedule. Control animals were administered intraperitoneally with normal saline. (2) The body weight of nude mice and transplanted tumor growth were ob-served and recorded, then inhibition rate of tumor growth was calculated. (3) The pathological features of transplanted tumor were studied under microscope. The expression of proliferating cell nuclear antigen (PCNA) was comparatively studied in chemotherapy group and control group by SP immunohistochemical method and flow cytometry analysis. Results: (1) Body weight, tumor weight and inhibition rate of tumor growth of athymic mice bearing cancer: Body weights and tumor weights of nude mice in every 2/3 LD10 chemotherapy group were significantly lower than those of the control group (P < 0.05), and the inhibition rates of tumor growth were 83.1%, 75.5%, 84.6%, 87.9% and 91.0%, respectively. Body weights of athymic mice in every 1/3 LD10 chemotherapy group were lower than that of the control (P < 0.05). The results showed that the 2/3 LD10 chemotherapy groups could reflect the effect of combination chemotherapy on the nude mice and the clinical dependability was better. So the data of 2/3 LD10 chemotherapy groups were appropriated for successive study. (2) Immunohistochemical studies: The expressions of PCNA in every chemotherapy group were significantly lower than that of the control (P < 0.05). Moreover, the expression of PCNA in NP group was significantly lower than those of CMF, CAF, TP and Xeloda groups (P < 0.05), while the expressions of TP and Xeloda groups were significantly lower than those of CMF and CAF groups (P < 0.05). (3) FCM analysis: FI values of PCNA in every chemotherapy group were significantly lower than that of the control (P < 0.05). FI values of PCNA in TP and Xeloda groups were significantly lower than those of CMF and CAF groups (P < 0.05), while the value of NP group was significantly lower than that of CMF group (P < 0.05). (4) Relationship between PCNA expression and pathologic response: The expression of PCNA was significantly correlated with pathological therapeutic response of transplanted breast carcinoma (P = 0.001). Conclusion: In vivo chemosensitivity testing with 2/3 LD10 dosage combinations in nude mice bearing cancer can reflect the effects of chemotherapeutics and affects of organism exactly. Various chemotherapy regimens all can decrease the expression of PCNA in breast cancer. The PCNA can be regarded as the factor to judge the response to chemotherapy, and it become possibly one of the prospective factors in the selection of chemotherapy regimen and play a rule in individualized therapy in the clinic.
基金National Natural Science Foundation of China(32073015).
文摘[Objective]To clone araC gene of Vibrio alginolyticus HY9901 strain,and analyze bioinformatics.[Methods]the whole genome sequence of Vibrio alginolyticus on GenBank was used to design specific primers.According to the principle of PCR amplification sequence,the target gene araC was amplified,and then the sequence was further analyzed by bioinformatics method to establish the phylogenetic tree of araC gene and its corresponding subunit three-dimensional structure model.[Results]Sequence analysis revealed araC gene is 711 bp and encodes a putative protein of 236 amino acids.The predicted molecular mass of AraC was 26.92 ku.Using Signal P 4.0 and TMHMM Server 2.0 software for analysis,it was predicted that the AraC protein did not contain a signal peptide or a transmembranous region.The AraC protein had two cAMP and cGMP dependent protein kinase phosphorylation site,five protein kinase C phosphorylation sites,three casein kinase II phosphorylation sites,one prenyl group binding site(CAAX box)and five microbodies C-terminal targeting signal.The predicted results of protein subcellular localization showed that AraC was located in the mitochondria,nucleus and cytoplasm.Its protein is unstable and hydrophilic.The AraC protein is a transcriptional regulatory protein which belongs to HTH_18 superfamily.According to the prediction,secondary structure:a-helix(Alpha helix)accounted for 52.12%,random coil(31.78%),extended strand(11.02%),b-fold(Beta turn)accounted for 5.08%.V.alginolyticus,Vibrio parahaemolyticus and Vibrio palustris were clustered together,which implies that the genetic relationship between these three species was the closest.
文摘Objective:This paper aims to explore the effect of individualized nursing intervention on patients with active tuberculosis(ATB)and latent tuberculosis infection(LTBI).Methods:The nursing study started in January 2020 and ended in January 2023.A total of 60 patients with ATB and LTBI were included,and they were divided into two groups according to the intervention schemes selected for control testing,each with 30 cases.The intervention program selected for group A was routine care,and for group B was individualized nursing.The proportion of adverse reactions,changes in the level of lung items,self-management outcomes and satisfaction were evaluated and compared.Results:After evaluating the proportion of adverse reactions,the total proportion of ATB and LTBI in group B was lower than that in group A(P<0.05).Based on the evaluation and testing of the expiratory flow(EF),expiratory volume(EV),and vital capacity(VC)after the intervention,these levels in group B showed higher outcomes than those in group A(P<0.05).The scores in terms of living habits,sleep,diet,and compliance in group B were higher than those in group A(P<0.05).The total proportion of the satisfaction of ATB and LTBI patients in group B was higher than that in group A(P<0.05).Conclusion:After the intervention of individualized nursing measures in patients with ATB and LTBI,it was found that it can not only play a positive role in the prevention and control of adverse reactions,but also improve their lung function,and promote their self-management,with good satisfaction level,thus it has high research and clinical application values.
基金supported by the Program of the National Natural Science Foundation of China(Nos.82171431 and 31972886)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(Nos.2020JJ2057 and 2021JJ10074)+6 种基金Natural Science Foundation of Changsha City(No.kq2208402)the Program of the National Natural Science Foundation of Hunan Province(No.2021JJ40989)the Project Program of National Clinical Research Center for Geriatric Disorders at Xiangya Hospital(No.2020LNJJ13)the Science and Technology Innovation 2030(STI2030-Major Projects,No.2021ZD0201803)the National Key R&D Program of China(No.2021YFA0805202)the Innovation Team Project of Hunan Province(No.2019RS1010)the Innovation Team Project of Central South University(No.2020CX016).
文摘Amyotrophic lateral sclerosis(ALS)is a fatal neurodegenerative disease characterized by progressive degeneration of motor neurons,and it demonstrates high clinical heterogeneity and complex genetic architecture.A variation within TRMT2B(c.1356G>T;p.K452N)was identified to be associated with ALS in a family comprising two patients with juvenile ALS(JALS).Two missense variations and one splicing variation were identified in 10 patients with ALS in a cohort with 910 patients with ALS,and three more variants were identified in a public ALS database including 3317 patients with ALS.A decreased number of mitochondria,swollen mitochondria,lower expression of ND1,decreased mitochondrial complex I activities,lower mitochondrial aerobic respiration,and a high level of ROS were observed functionally in patient-originated lymphoblastoid cell lines and TRMT2B interfering HEK293 cells.Further,TRMT2B variations overexpression cells also displayed decreased ND1.In conclusion,a novel JALS-associated gene called TRMT2B was identified,thus broadening the clinical and genetic spectrum of ALS.
基金The work was financially supported by the National Natural Science Foundation of China(No.51704269)Fundamental Research Funds for the Central Universities(No.WK2320000047)the Fundamental Research Funds for the Central Universities(No.WK2320000039).
文摘Owing to unprecedented merits such as high theoretical capacity,superior energy density and low cost,lithium-sulfur batteries(LSBs)show a bright future both in scientific and industrial areas.Whereas,the inherent issues,including highly insulating character,undesired shuttle behavior and lithium dendrites growth,are seriously impeding its practical usage.Here,a metal-organic-frameworks(MOFs)derived N,S co-doped carbon nanotube hollow architecture confining with CoS_(2) nanoparticles(CoS_(2)/NSCNHF)modified separator is designed to surmount these obstacles.Compared with Celgard separator,this designed separator shows obviously enhanced flame retardancy,giving 73.1%and 53.0%reductions in peak heat release rate and total heat release,separately.Concretely,its hollow structure,conductive feature,electrocatalytic activity and Lewis acid-base interaction enable the efficient inhibition on shuttle behavior as well as boost in polysulfides conversion kinetics.The cell with modified separator delivers a high discharge capacity of 1,284.5 mAh·g^(−1).After running for 100 cycles,a discharge capacity of 661.3 mAh·g^(−1) is remained.Markedly,the suppression on lithium dendrites growth is also observed,manifesting the enhanced battery safety.Overall,this work may shed light on the effective usage of MOFs-derived hierarchical composite in achieving LSBs with high electrochemical performance as well as safety.
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.11904176,61874060,61911530220,U1932159,11774249)the Natural Science Foundation of Jiangsu Higher Education Institutions(Grant No.19KJB140004)+2 种基金the startup found from NJUPT(Grant Nos.NY219028,NY217118)NSF of Jiangsu Province(Grant Nos.BK20181388,BK20171209)the Key University Science Research Project of Jiangsu Province(Grant No.18KJA140004)。
文摘Copper indium thiophosphate,CuInP_(2)S_(6),has attracted much attention in recent years due to its van der Waals layered structure and robust ferroelectricity at room temperature.In this review,we aim to give an overview of the various properties of CuInP_(2)S_(6),covering structural,ferroelectric,dielectric,piezoelectric and transport properties,as well as its potential applications.We also highlight the remaining questions and possible research directions related to this fascinating material and other compounds of the same family.
基金the National Natural Science Foundation of China(No.62004056)the Hundred Persons Plan of Hebei Province(Nos.E2018050004 and E2018050003)+5 种基金This work was also supported by National Natural Science Foundation of China(Nos.61674050 and 61874158)the Outstanding Youth Project of Hebei Province(No.F2016201220)the Project of Distinguished Young of Hebei Province(No.A2018201231)he Support Program for the Top Young Talents of Hebei Province(No.70280011807)the Training and Introduction of High-level Innovative Talents of Hebei University(No.801260201300)the Supporting Plan for 100 Excellent Innovative Talents in Colleges and Universities of Hebei Province(No.SLRC2019018).
文摘Realization of functional flexible artificial synapse is a significant step toward neuromorphic computing.Herein,a flexible artificial synapse based on ferroelectric tunnel junctions(FTJs)is demonstrated,using BiFeO_(3)(BFO)thin film as the functional layer.The inorganic single crystalline FTJs grown on rigid perovskite substrates at high temperatures are integrated with the flexible plastic substrates,by using the water-soluble Sr_(3)Al_(2)O_(6)(SAO)as the sacrificial layer and the following transfer.The transferred freestanding BFO thin film exhibits excellent ferroelectric properties.Moreover,the memristive properties and the brain-like synaptic learning performance of the flexible FTJs are investigated.The results show that multilevel resistance states were maintained well of the flexible artificial synapse,together with their stable synaptic learning properties.Our work indicates the promising opportunity of ferroelectric thin film based flexible synapse used in the future neuromorphic computing system.
基金the National Key R&D Program of China(2021YFA0805200)the National Major Projects in Brain Science and Brain-like Research(2021ZD0201803 to J.W.)+7 种基金the National Natural Science Foundation of China(82171431,81671120,81300981 to J.W.,31872778 and 82171506 to Z.H.)the National Key Research and Development Program of China(#2018YFC1312003 to J.W.)the Natural Science Fund for Distinguished Young Scholars of Hunan Province,China(2020JJ2057 to J.W.)the Project Program of National Clinical Research Center for Geriatric Disorders at Xiangya Hospital(2020LNJJ13 to J.W.)Key Research and Development Programs from Hunan Province(2021DK2001 to Z.H.)the Innovative Team Program from Hunan Province(2019RS1010)the Innovation-driven Team Project from Central South University(2020CX016)the Discipline Innovative Engineering Plan(111 Program)of China(B13036).Z.H.is supported by the Hunan Hundred Talents Program for Young Outstanding Scientists.
文摘Background:Amyotrophic lateral sclerosis(ALS)is a devastating progressive neurodegenerative disease that affects neurons in the central nervous system and the spinal cord.As in many other neurodegenerative disorders,the genetic risk factors and pathogenesis of ALS involve dysregulation of cytoskeleton and neuronal transport.Notably,sen-sory and motor neuron diseases such as hereditary sensory and autonomic neuropathy type 2(HSAN2)and spastic paraplegia 30(SPG30)share several causative genes with ALS,as well as having common clinical phenotypes.KIF1A encodes a kinesin 3 motor that transports presynaptic vesicle precursors(SVPs)and dense core vesicles and has been reported as a causative gene for HSAN2 and SPG30.Methods:Here,we analyzed whole-exome sequencing data from 941 patients with ALS to investigate the genetic association of KIF1A with ALS.Results:We identified rare damage variants(RDVs)in the KIF1A gene associated with ALS and delineated the clini-cal characteristics of ALS patients with KIF1A RDVs.Clinically,these patients tended to exhibit sensory disturbance.Interestingly,the majority of these variants are located at the C-terminal cargo-binding region of the KIF1A protein.Functional examination revealed that the ALS-associated KIF1A variants located in the C-terminal region preferentially enhanced the binding of SVPs containing RAB3A,VAMP2,and synaptophysin.Expression of several disease-related KIF1A mutants in cultured mouse cortical neurons led to enhanced colocalization of RAB3A or VAMP2 with the KIF1A motor.Conclusions:Our study highlighted the importance of KIF1A motor-mediated transport in the pathogenesis of ALS,indicating KIF1A as an important player in the oligogenic scenario of ALS.