期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
A Prediction-Based Multi-Objective VM Consolidation Approach for Cloud Data Centers
1
作者 Xialin Liu junsheng wu +1 位作者 Lijun Chen Jiyuan Hu 《Computers, Materials & Continua》 SCIE EI 2024年第7期1601-1631,共31页
Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource... Virtual machine(VM)consolidation aims to run VMs on the least number of physical machines(PMs).The optimal consolidation significantly reduces energy consumption(EC),quality of service(QoS)in applications,and resource utilization.This paper proposes a prediction-basedmulti-objective VMconsolidation approach to search for the best mapping between VMs and PMs with good timeliness and practical value.We use a hybrid model based on Auto-Regressive Integrated Moving Average(ARIMA)and Support Vector Regression(SVR)(HPAS)as a prediction model and consolidate VMs to PMs based on prediction results by HPAS,aiming at minimizing the total EC,performance degradation(PD),migration cost(MC)and resource wastage(RW)simultaneously.Experimental results usingMicrosoft Azure trace show the proposed approach has better prediction accuracy and overcomes the multi-objective consolidation approach without prediction(i.e.,Non-dominated sorting genetic algorithm 2,Nsga2)and the renowned Overload Host Detection(OHD)approaches without prediction,such as Linear Regression(LR),Median Absolute Deviation(MAD)and Inter-Quartile Range(IQR). 展开更多
关键词 VM consolidation PREDICTION multi-objective optimization machine learning
下载PDF
Corrosion engineering on AlCoCrFeNi high-entropy alloys toward highly efficient electrocatalysts for the oxygen evolution of alkaline seawater 被引量:2
2
作者 Zhibin Chen Kang Huang +4 位作者 Bowei Zhang Jiuyang Xia junsheng wu Zequn Zhang Yizhong Huang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第10期1922-1932,共11页
Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the prom... Seawater splitting is a prospective approach to yield renewable and sustainable hydrogen energy.Complex preparation processes and poor repeatability are currently considered to be an insuperable impediment to the promotion of the large-scale production and application of electrocatalysts.Avoiding the use of intricate instruments,corrosion engineering is an intriguing strategy to reduce the cost and presents considerable potential for electrodes with catalytic performance.An anode comprising quinary AlCoCrFeNi layered double hydroxides uniformly decorated on an AlCoCrFeNi high-entropy alloy is proposed in this paper via a one-step corrosion engineering method,which directly serves as a remarkably active catalyst for boosting the oxygen evolution reaction(OER)in alkaline seawater.Notably,the best-performing catalyst exhibited oxygen evolution reaction activity with overpotential values of 272.3 and 332 mV to achieve the current densities of 10 and100 mA·cm^(-2),respectively.The failure mechanism of the obtained catalyst was identified for advancing the development of multicomponent catalysts. 展开更多
关键词 corrosion engineering oxygen evolution reaction catalysts layered double hydroxides seawater splitting failure mechanism
下载PDF
Incorporation of nano/micron-SiC particles in Ni-based composite coatings towards enhanced mechanical and anti-corrosion properties 被引量:2
3
作者 Bowei Zhang Qiao Zhang +5 位作者 Zhan Zhang Kui Xiao Qiong Yao Guojia Ma Gang Sun junsheng wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期153-160,共8页
Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The ... Ni-based composite coatings incorporated with nano/micron SiC particles were fabricated via electrochemical co-deposition in Watts bath,followed by the evaluation of their mechanical and anti-corrosion properties.The micrographic observations suggest that the SiC particles with various sizes can be well incorporated to the Ni substrate.X-ray diffraction(XRD)patterns indicate that SiC particles with smaller sizes could weaken the preferential growth of Ni along(200)facet.In addition,it is found that the incorporated SiC particles with medium micron sizes(8 and 1.5μm)could significantly enhance the micro-hardness of the Ni composite coatings.Nevertheless,electrochemical measurements demonstrate that micron-sized SiC particles would weaken the corrosion resistance of Ni composite coatings ascribed to the structure defects induced.In contrast,the combined incorporation of nanosized(50 nm)SiC particles with medium micron(1.5μm)ones is capable of promoting the compactness of the composite coatings,which is beneficial to the long-term corrosion resistance with negligible micro-hardness loss. 展开更多
关键词 Watts bath Ni coating SiC particles corrosion resistance ELECTRODEPOSITION
下载PDF
Secondary phase precipitate-induced localized corrosion of pure aluminum anode for aluminum–air battery
4
作者 Bowei Zhang Hezu Wang +6 位作者 Yan Su Wenguang Yang Xuelong Hao Zequn Zhang Fengqin Wang Wei Xue junsheng wu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期977-987,共11页
Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(S... Understanding the influence of purities on the electrochemical performance of pure aluminum(Al)in alkaline media for Al–air batteries is significant.Herein,we comprehensively investigate secondary phase precipitate(SPP)-induced localized corrosion of pure Al in NaOH solution mainly based on quasi-in-situ and cross-section observations under scanning electron microscopy coupled with finite element simulation.The experimental results indicate that Al–Fe SPPs appear as clusters and are coherent with the Al substrate.In alkaline media,Al–Fe SPPs exhibit more positive potentials than the substrate,thus aggravating localized galvanic corrosion as cathodic phases.Moreover,finite element simulation indicates that the irregular geometry coupled with potential difference produces the non-uniform current density distribution inside the SPP cluster,and the current density on the Al substrate gradually decreases with distance. 展开更多
关键词 ALUMINUM secondary phase precipitates cluster CORROSION ALKALINE
下载PDF
A Controlled Mixing Method for Stabilizing the Purity and Reducing the Waste in Gas Delivery Systems
5
作者 junsheng wu Farhang Shadman 《Advances in Chemical Engineering and Science》 2019年第1期11-26,共16页
The variation of impurity concertation in the ultra-high purity (UHP) gases, delivered from cryogenic storage tanks and transported through long pipes, is a major problem in systems like those used in semiconductor ma... The variation of impurity concertation in the ultra-high purity (UHP) gases, delivered from cryogenic storage tanks and transported through long pipes, is a major problem in systems like those used in semiconductor manufacturing facilities. A method is developed for stabilizing the purity and reducing the gas consumption in these systems. This technique uses a dynamically controlled mixing of gases supplied by multiple cryogenic tanks. The control scheme uses software modules that simulate the processes that cause purity variation in both the cryogenic tanks and the transport lines. These processes include vaporization and supply in tanks, various modes of transport in delivery pipes, and the adsorption and desorption on surfaces. The method also includes and corrects for variations caused by transience in gas usage rate as well as ambient conditions. 展开更多
关键词 HIGH-PURITY GASES CRYOGENIC IMPURITY DRIFT Moisture
下载PDF
Enhancing the mechanical and anticorrosion properties of 316L stainless steel via a cathodic plasma electrolytic nitriding treatment with added PEG 被引量:4
6
作者 Tianyi Zhang junsheng wu +7 位作者 Lei Jin Zhan Zhang Wan Rong Bowei Zhang Yi Wang Yedong He Wei Liu Xiaogang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第11期2630-2637,共8页
A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macr... A cathodic plasma electrolytic nitriding(CPEN)treatment with a urea aqueous solution was performed on 316L stainless steel to rapidly improve its surface properties in this work.Test results show that the PEG2000 macromolecules increased the nitriding energy via enhancing the ability to bond the produced gas film to the metal/electrolyte interface.The cross-sectional morphologies indicate that a thick nitrided layer was obtained when the urea concentration was 543 g I^-1,corresponding to a Vickers hardness 450 HV(0.1),which was 3.5 times larger than that of the substrate.The nitrided layer mainly contained expanded austenite(γN),oxides and iron nitrides(e.g.,Fe3O4 and FeN(0.076)).In terms of its performance,coefficient of friction(COF)of the nitride layer decreased to nearly two-thirds that of the untreated layer,and the passivation current densities of the nitrided sample in a 3.5%NaCl solution decreased by an order of magnitude compared to that of the substrate.Therefore,the approach presented herein provides an attractive way to modify the effect of CPEN in a urea aqueous solution. 展开更多
关键词 316L stainless steel Cathodic plasma electrolytic nitriding Coefficient of friction Polarization curves
原文传递
Cobalt tungsten phosphide with tunable W-doping as highly efficient electrocatalysts for hydrogen evolution reaction 被引量:1
7
作者 Bowei Zhang Chaojiang Li +5 位作者 Jun Hu Dongdong Peng Kang Huang junsheng wu Zhong Chen Yizhong Huang 《Nano Research》 SCIE EI CSCD 2021年第11期4073-4078,共6页
It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments. Herein, we report ... It has been of interest in seeking electrocatalysts that could exercise equally high-efficient and durable hydrogen evolution upon nonselective electrolytes in both acidic and alkaline environments. Herein, we report a facile strategy to fabricate cobalt tungsten phosphides (CoxW2−xP2/C) hollow polyhedrons with tunable composition based on metal-organic frameworks (MOFs) template method. By the deliberate control of W doping, the synthesized catalyst with the composition of Co0.9W1.1P2/C is found to be able to achieve a current density of 10 mA·cm^(−2) at overpotentials of 35 and 54 mV in acidic and alkaline media, respectively. This combined electrochemical property stands atop the state-of-the-art electrocatalyst counterparts. To unveil the peculiar behavior of the structure, density functional theory (DFT) calculation was implemented and reveals that the surface W-doping facilitates the optimization of hydrogen absorption free energy (ΔGH*) as well as the thermodynamic and kinetics barriers for water dissociation, which is coupled with the hollow structure of Co-W phosphides, leading to the prominent HER catalytic performance. 展开更多
关键词 cobalt tungsten phosphide W-doping tunable composition hydrogen evolution reaction acid and alkaline media
原文传递
Flexible Au micro-array electrode with atomic-scale Au thin film for enhanced ethanol oxidation reaction
8
作者 Xun Cao Dongdong Peng +7 位作者 Cao wu Yongmin He Chaojiang Li Bowei Zhang Changcun Han junsheng wu Zheng Liu Yizhong Huang 《Nano Research》 SCIE EI CAS CSCD 2021年第1期311-319,共9页
The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%cover... The catalysis of Au thin film could be improved by fabrication of array structures in large area.In this work,nanoimprint lithography has been developed tofabricate flexible Au micro-array(MA)electrodes with~100%coverage.Advanced electron microscopy characterisations have directly visualised the atomic-scale three-dimensional(3D)nanostructures with a maximum depth of 6 atomic layers.In-situ observation unveils the crystal growth in the form of twinning.High double layer capacitance brings about large number of active sites on the Au thin film and has a logarithmic relationship with mesh grade.Electrochemistry testing shows that the Au MAs perform much better ethanol oxidation reaction than the planar sample;MAs with higher mesh grade have a greater active site utilisation ratio(ASUR),which is important to build electrochemical double layer for efficient charge transfer.Further improvement on ASUR is expected for greater electrocatalytic performance and potential application in direct ethanol fuel cell. 展开更多
关键词 atomic-scale three-dimensional(3D)nanostructures atomic-scale active sites in-situ observations flexible electrode ethanol oxidation reaction active site utilisation ratio
原文传递
Electrochemical behaviors of hierarchical copper nano- dendrites in alkaline media
9
作者 Bowei Zhang Guang Yang +4 位作者 Chaojiang Li Kang Huang junsheng wu Shiji Hao Yizhong Huang 《Nano Research》 SCIE EI CAS CSCD 2018年第8期4225-4231,共7页
In this study, hierarchical copper nano-dendrites (CuNDs) are fabricated via the electrodeposition method. The electrochemical behaviors of the as-obtained hierarchical CuNDs in 0.1 M NaOH aqueous solution are subse... In this study, hierarchical copper nano-dendrites (CuNDs) are fabricated via the electrodeposition method. The electrochemical behaviors of the as-obtained hierarchical CuNDs in 0.1 M NaOH aqueous solution are subsequently studied. The CuNDs experience a non-equilibritrm oxidation process when subjected to cyclic voltammetry (CV) measurements. The first oxidation peak O1 in CV is attributed to the formation of an epitaxial Cu20 layer over the surface of the hierarchical CuNDs. However, the second oxidation peak 02 in CV appears unusually broad across a wide potential range. In this region, the reaction process starts with the nucleation and growth of Cu(OH)2 nanoneedles, followed by the oxidation of Cu20. Upon the increase of potential Cu20 is gradually transformed to CuO and Cu(OH)2, forming a dual-layer structure with high productivity of Cu(OH)2 nanoneedles. 展开更多
关键词 copper nano-dendrites(CuNDs) non-equilibrium oxidation Cu(OH)2 nanoneedles alkaline aqueous solution
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部