In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic ...In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanfi (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanfi and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.展开更多
In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanfi (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve ...In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanfi (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptJc cleft width and thinning of the postsynaptJc density, and it significantly suppressed the down-regulation of intracellular calcium/ calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kJnase II expression in the hippocampal CA3 region.展开更多
Objective:Human pancreatic cancer is one of the most common clinical malignancies.The effect of comprehensive treatment based on surgery is general.The effects of chemotherapy were not obvious mainly because of lack ...Objective:Human pancreatic cancer is one of the most common clinical malignancies.The effect of comprehensive treatment based on surgery is general.The effects of chemotherapy were not obvious mainly because of lack of targeting and chemoresistance in pancreatic cancer.This study aimed to investigate the effects of folate receptor (FR)-mediated gemcitabine FA-Chi-Gem nanoparticles with a core-shell structure by electrostatic spray on pancreatic cancer.Methods:In this study,the levels of expression of FR in six human pancreatic cancer cell lines were studied by immunohistochemical analysis.The uptake rate of isothiocyanate-labeled FA-Chi nanoparticles in FR high expression cell line COLO357 was assessed by fluorescence microscope and the inhibition rate of FA-Chi-Gem nanoparticles on COLO357 cells was evaluated by MTT assay.Moreover,the biodistribution of PEG-FA-ICGDER02-Chi in the orthotopic pancreatic tumor model was observed using near-infrared imaging and the human pancreatic cancer orthotopic xenografts were treated with different nanoparticles and normal saline control.Results:The expression of FR in COLO357 was the highest among the six pancreatic cancer cell lines.The FR mainly distributed on cell membrane and fewer in the cytoplasm in pancreatic cancer.Moreover,the absorption rate of the FA-Chi-Gem nanoparticles was more than the Chi nanoparticles without FA modified.The proliferation of COLO357 was significantly inhibited by FA-Chi-Gem nanoparticles.The PEG-FA-ICGDER02-Chi nanoparticles were enriched in tumor tissue in human pancreatic cancer xenografts,while non-targeted nanoparticles were mainly in normal liver tissue.PEG-FA-Gem-Chi significantly inhibited the growth of human pancreatic cancer xenografts (PEG-FA-Gem-Chi vs.Gem,t=22.950,P=0.000).Conclusions:PEG-FA-FITC-Chi nanoparticles might be an effective targeted drug for treating human FR-positive pancreatic cancer.展开更多
The structure of Ni active sites supported on amorphous silica-alumina supports with different contents of Al_(2)O_(3)loadings in relation to their activities in ethylene oligomerization were investigated.Two kinds of...The structure of Ni active sites supported on amorphous silica-alumina supports with different contents of Al_(2)O_(3)loadings in relation to their activities in ethylene oligomerization were investigated.Two kinds of Ni sites were detected by in situ FTIR-CO and H_(2)-TPR experiments,that are Ni^(2+)cations as grafted on weak acidic silanols and Ni^(2+)cations at ion-exchange positions.The ethylene oligomerization activities of these Ni/ASA catalysts were found an ascending tendency as the Al_(2)O_(3)loading decreased,which could be attributed to the enriched concentration of Ni^(2+)species on acidic silanols with a weaker interaction with the amorphous silica-alumina support.These Ni^(2+)species were more easily to be evolved into Ni^(+)species,which has been identified to be the active sites of ethylene oligomerization.Thus,it seems reasonable to conclude that Ni^(2+)species grafted on acidic silanols were the precursors of active sites.展开更多
Objective: To confirm whether self-administered AVNA treatment is effective in improving emotional distressunder the COVID-19 pandemic.Methods: A smartphone-based online, randomized, controlled trial was designed from...Objective: To confirm whether self-administered AVNA treatment is effective in improving emotional distressunder the COVID-19 pandemic.Methods: A smartphone-based online, randomized, controlled trial was designed from 26 February 2020 to 28April 2020 in four study sites, including Wuhan, Beijing, Shenyang, and Guangzhou of China. Local residentswho had considerable emotional distress with a score of the Hospital Anxiety and Depression Scale (HADS) ≥9 were recruited. Participants were randomly assigned to three times of AVNA (n = 191) per day, in morning,around noon, and in evening or usual care (UC, n = 215) once daily for 14 days. The primary outcome was theresponse rate, which was the proportion of participants whose Hospital Anxiety and Depression Scale (HADS)score reduced from baseline by ≥ 50%. The assessment was conducted at baseline, 3 days, and 14 days.Results: The AVNA group had a markedly higher response rate than the UC group at 3 days (35.6% vs. 24.9%,P = 0.02) and at 14 days (70.7% vs. 60.6%, P = 0.02). The AVNA group showed significantly greater reductionin scores of HADS at the two measurement points and BAI at 3 days (P ≤ 0.03), with average respective effectsize of 0.217 and 0.195. Participants with AVNA spent less time falling asleep and rated their sleep qualitybeing remarkably higher than those with UC at endpoint.Conclusion: During COVID-19 pandemic period, treatment with self-administrated AVNA was more effectivethan UC in reducing emotional distress of isolated populations. These findings support self-administered AVNAas a treatment option for patients with emotional distress under the COVID-19 pandemic or other emergentevents.展开更多
Metal clusters have attracted wide interests due to their unique electronic and optical properties,but the low luminescence quantum yield(QY)prevents them from potential biomedical applications.In this work,silver-dop...Metal clusters have attracted wide interests due to their unique electronic and optical properties,but the low luminescence quantum yield(QY)prevents them from potential biomedical applications.In this work,silver-doped Au nanoclusters(NCs)are shown to be able to improve the QY of metal clusters.We succeeded in synthesizing ultrabright glutathione(GSH)protected AuAg clusters with 10.8%QY by a one-pot route.Their florescence is about 7.5 times brighter than pure Au NCs,with super photostability and good biocompatibility in physiological environment.Based on density functional theory(DFT)calculations,we investigated the electronic structures and optical properties of the AuAg NCs.The results show that the increase of the density of states of the lowest unoccupied molecular orbital(LUMO)leads to the fluorescence enhancement.In addition,two-photon excitation fluorescence imaging has been performed to show their great potential for biomedicine.展开更多
Balanced immunity is pivotal for health and homeostasis.CD4+helper T(Th)cells are central to the balance between immune tolerance and immune rejection.Th cells adopt distinct functions to maintain tolerance and clear ...Balanced immunity is pivotal for health and homeostasis.CD4+helper T(Th)cells are central to the balance between immune tolerance and immune rejection.Th cells adopt distinct functions to maintain tolerance and clear pathogens.Dysregulation of Th cell function often leads to maladies,including autoimmunity,inflammatory disease,cancer,and infection.Regulatory T(Treg)and Th17 cells are critical Th cell types involved in immune tolerance,homeostasis,pathogenicity,and pathogen clearance.It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease.Cytokines are instrumental in directing Treg and Th17 cell function.The evolutionarily conserved TGF-β(transforming growth factor-β)cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory,pathogenic,and immune regulatory.How TGF-βsuperfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades.Here,we introduce the fundamental biology of TGF-βsuperfamily signaling,Treg cells,and Th17 cells and discuss in detail how the TGF-βsuperfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.展开更多
Geometric and working condition uncertainties are inevitable in a compressor,deviating the compressor performance from the design value.It’s necessary to explore the influence of geometric uncertainty on performance ...Geometric and working condition uncertainties are inevitable in a compressor,deviating the compressor performance from the design value.It’s necessary to explore the influence of geometric uncertainty on performance deviation under different working conditions.In this paper,the geometric uncertainty influences at near stall,peak efficiency,and near choke conditions under design speed and low speed are investigated.Firstly,manufacturing geometric uncertainties are analyzed.Next,correlation models between geometry and performance under different working conditions are constructed based on a neural network.Then the Shapley additive explanations(SHAP)method is introduced to explain the output of the neural network.Results show that under real manufacturing uncertainty,the efficiency deviation range is small under the near stall and peak efficiency conditions.However,under the near choke conditions,efficiency is highly sensitive to flow capacity changes caused by geometric uncertainty,leading to a significant increase in the efficiency deviation amplitude,up to a magnitude of-3.6%.Moreover,the tip leading-edge radius and tip thickness are two main factors affecting efficiency deviation.Therefore,to reduce efficiency uncertainty,a compressor should be avoided working near the choke condition,and the tolerances of the tip leading-edge radius and tip thickness should be strictly controlled.展开更多
Normal levels of oxygen free radicals play an important role in cellular signal transduction, redox homeostasis, regulatory pathways, and metabolic processes. However, radiolysis of water induced by high-energy radiat...Normal levels of oxygen free radicals play an important role in cellular signal transduction, redox homeostasis, regulatory pathways, and metabolic processes. However, radiolysis of water induced by high-energy radiation can produce excessive amounts of exogenous oxygen free radicals, which cause severe oxidative damages to all cellular components, disrupt cellular structures and signaling pathways, and eventually lead to death. Herein, we show that hybrid nanoshields based on single-layer graphene encapsulating metal nanoparticles exhibit high catalytic activity in scavenging oxygen superoxide (·O2^-), hydroxyl (·OH), and hydroperoxyl (HO2·) free radicals via electron transfer between the single-layer graphene and the metal core, thus achieving biocatalytic scavenging both in vitro and in vivo. The levels of the superoxide enzyme, DNA, and reactive oxygen species measured in vivo dearly show that the nanoshields can efficiently eliminate harmful oxygen free radicals at the cellular level, both in organs and circulating blood. Moreover, the nanoshields lead to an increase in the overall survival rate of gamma ray-irradiated mice to up to 90%, showing the great potential of these systems as protective agents against ionizing radiation.展开更多
Ionizing radiation produces excessive reactive oxygen species (ROS) which impose detrimental effects on biological systems. Thus, it is important to explore clinically safe and efficacious radioprotection agents to ...Ionizing radiation produces excessive reactive oxygen species (ROS) which impose detrimental effects on biological systems. Thus, it is important to explore clinically safe and efficacious radioprotection agents to scavenge ROS and reduce the risks of radiotherapy. Recently, emerging catalytic nanomaterials such as sulfide nanomaterials have shown capability of clearing ROS in vivo by unique electron transfers between atoms, but their catalytic activities are yet suboptimal. As such, there is an unmet need to improve cat- alytic properties for stronger antioxidant activities and radiation protection. Herein, we prepared ultra- small Au-MoS2 clusters (~2.Snm) and they showed enhanced catalytic properties via gold intercalation facilitating increased active sites and synergistic effects. Electrocatalysis results revealed that the catalytic activity of Au-MoS2 towards 1-1202 was superior to ultrasmall MoS2 without Au. As a result, we found that improving the electrocatalytic property of Au-MoS2 can effectively enhance corre- sponding antioxidant activities and radioprotection effects in vivo. In addition, Au-MoS2 also showed sig- nificant radioprotection in vitro and dramatically reduced the excess of radiation-induced adverse ROS. It also rescued radiation-induced DNA damages and protected the bone marrow hematopoietic system from ionizing radiation.展开更多
Radiotherapy is one of the most important clinical cancer treatments,which works mainly by delive ring a prescribed radiation dose to the tumor tissues.However,high doses of radiation may also lead many irreversible d...Radiotherapy is one of the most important clinical cancer treatments,which works mainly by delive ring a prescribed radiation dose to the tumor tissues.However,high doses of radiation may also lead many irreversible damages to the surrounding normal tissues.Thereby,how to effectively reduce these sideeffects has been a significant factor in influencing cancer therapeutic effect.In this work,we synthesized the hollow PtPd nanocubes with high-index facets,and investigated the radiation protection capability in vitro and in vivo.Our results showed the PtPd nanocrystals can decrease the ROS level and improve the survival rate of radiated cells.Meanwhile,survival rate of radiated mice can significantly increase from 0 to 30%after PtPd treatment.Consequently,the enzyme and ROS level in radiated mice can be recovered.展开更多
基金supported by the National Natural Science Foundation of China,No.30472241,90709031 and 30973796the National Basic Research Program of China for Traditional Chinese Medicine Theory("973" Program),No.2007CB512505+1 种基金the Natural Foundation of Hainan Province(No.310054)a grant from the Health Department of Hainan Province(QiongWei 2010-45)
文摘In the present study, a rat model of chronic neuropathic pain was established by ligation of the sciatic nerve and a model of learning and memory impairment was established by ovariectomy to investigate the analgesic effect of repeated electroacupuncture stimulation at bilateral Zusanfi (ST36) and Yanglingquan (GB34). In addition, associated synaptic changes in neurons in the paraventricular nucleus of the hypothalamus were examined. Results indicate that the thermal pain threshold (paw withdrawal latency) was significantly increased in rats subjected to 2-week electroacupuncture intervention compared with 2-day electroacupuncture, but the analgesic effect was weakened remarkably in ovariectomized rats with chronic constrictive injury. 2-week electroacupuncture intervention substantially reversed the chronic constrictive injury-induced increase in the synaptic cleft width and thinning of the postsynaptic density. These findings indicate that repeated electroacupuncture at bilateral Zusanfi and Yanglingquan has a cumulative analgesic effect and can effectively relieve chronic neuropathic pain by remodeling the synaptic structure of the hypothalamic paraventricular nucleus.
基金supported by the National Natural Science Foundation of China,No.30472241,90709031 and 30973796the Ministry of Science and Technology of China("973"Project),No.2007CB512505+1 种基金provided by the Foundation of Hainan Province,No.310054the Health Department of Hainan Province,Qiong-Wei-45
文摘In the present study, we examined the analgesic effect of repeated electroacupuncture at bilateral Zusanfi (ST36) and Yanglingquan (GB34) once a day for 14 consecutive days in a rat model of chronic sciatic nerve constriction injury-induced neuropathic pain. In addition, concomitant changes in calcium/calmodulin-dependent protein kinase II expression and synaptic ultrastructure of neurons in the hippocampal CA3 region were examined. The thermal pain threshold (paw withdrawal latency) was increased significantly in both groups at 2 weeks after electroacupuncture intervention compared with 2 days of electroacupuncture. In ovariectomized rats with chronic constriction injury, the analgesic effect was significantly reduced. Electroacupuncture for 2 weeks significantly diminished the injury-induced increase in synaptJc cleft width and thinning of the postsynaptJc density, and it significantly suppressed the down-regulation of intracellular calcium/ calmodulin-dependent protein kinase II expression in the hippocampal CA3 region. Repeated electroacupuncture intervention had a cumulative analgesic effect on injury-induced neuropathic pain reactions, and it led to synaptic remodeling of hippocampal neurons and upregulated calcium/calmodulin-dependent protein kJnase II expression in the hippocampal CA3 region.
基金supported by the National Natural Science Foundation of China(No.81071967 and 30872500)the Natural Science Foundation of Jiangsu province(Project No:BK2010242)
文摘Objective:Human pancreatic cancer is one of the most common clinical malignancies.The effect of comprehensive treatment based on surgery is general.The effects of chemotherapy were not obvious mainly because of lack of targeting and chemoresistance in pancreatic cancer.This study aimed to investigate the effects of folate receptor (FR)-mediated gemcitabine FA-Chi-Gem nanoparticles with a core-shell structure by electrostatic spray on pancreatic cancer.Methods:In this study,the levels of expression of FR in six human pancreatic cancer cell lines were studied by immunohistochemical analysis.The uptake rate of isothiocyanate-labeled FA-Chi nanoparticles in FR high expression cell line COLO357 was assessed by fluorescence microscope and the inhibition rate of FA-Chi-Gem nanoparticles on COLO357 cells was evaluated by MTT assay.Moreover,the biodistribution of PEG-FA-ICGDER02-Chi in the orthotopic pancreatic tumor model was observed using near-infrared imaging and the human pancreatic cancer orthotopic xenografts were treated with different nanoparticles and normal saline control.Results:The expression of FR in COLO357 was the highest among the six pancreatic cancer cell lines.The FR mainly distributed on cell membrane and fewer in the cytoplasm in pancreatic cancer.Moreover,the absorption rate of the FA-Chi-Gem nanoparticles was more than the Chi nanoparticles without FA modified.The proliferation of COLO357 was significantly inhibited by FA-Chi-Gem nanoparticles.The PEG-FA-ICGDER02-Chi nanoparticles were enriched in tumor tissue in human pancreatic cancer xenografts,while non-targeted nanoparticles were mainly in normal liver tissue.PEG-FA-Gem-Chi significantly inhibited the growth of human pancreatic cancer xenografts (PEG-FA-Gem-Chi vs.Gem,t=22.950,P=0.000).Conclusions:PEG-FA-FITC-Chi nanoparticles might be an effective targeted drug for treating human FR-positive pancreatic cancer.
文摘The structure of Ni active sites supported on amorphous silica-alumina supports with different contents of Al_(2)O_(3)loadings in relation to their activities in ethylene oligomerization were investigated.Two kinds of Ni sites were detected by in situ FTIR-CO and H_(2)-TPR experiments,that are Ni^(2+)cations as grafted on weak acidic silanols and Ni^(2+)cations at ion-exchange positions.The ethylene oligomerization activities of these Ni/ASA catalysts were found an ascending tendency as the Al_(2)O_(3)loading decreased,which could be attributed to the enriched concentration of Ni^(2+)species on acidic silanols with a weaker interaction with the amorphous silica-alumina support.These Ni^(2+)species were more easily to be evolved into Ni^(+)species,which has been identified to be the active sites of ethylene oligomerization.Thus,it seems reasonable to conclude that Ni^(2+)species grafted on acidic silanols were the precursors of active sites.
基金the National Key R&D Program of China(No.2018YFC1705800 and No.2018YFC1705801)the Fundamental Research Funds for the Central public welfare research institutes(No.ZZ202017009)General Research Fund(GRF)of Research Grant Council of HKSAR(No.17115017).
文摘Objective: To confirm whether self-administered AVNA treatment is effective in improving emotional distressunder the COVID-19 pandemic.Methods: A smartphone-based online, randomized, controlled trial was designed from 26 February 2020 to 28April 2020 in four study sites, including Wuhan, Beijing, Shenyang, and Guangzhou of China. Local residentswho had considerable emotional distress with a score of the Hospital Anxiety and Depression Scale (HADS) ≥9 were recruited. Participants were randomly assigned to three times of AVNA (n = 191) per day, in morning,around noon, and in evening or usual care (UC, n = 215) once daily for 14 days. The primary outcome was theresponse rate, which was the proportion of participants whose Hospital Anxiety and Depression Scale (HADS)score reduced from baseline by ≥ 50%. The assessment was conducted at baseline, 3 days, and 14 days.Results: The AVNA group had a markedly higher response rate than the UC group at 3 days (35.6% vs. 24.9%,P = 0.02) and at 14 days (70.7% vs. 60.6%, P = 0.02). The AVNA group showed significantly greater reductionin scores of HADS at the two measurement points and BAI at 3 days (P ≤ 0.03), with average respective effectsize of 0.217 and 0.195. Participants with AVNA spent less time falling asleep and rated their sleep qualitybeing remarkably higher than those with UC at endpoint.Conclusion: During COVID-19 pandemic period, treatment with self-administrated AVNA was more effectivethan UC in reducing emotional distress of isolated populations. These findings support self-administered AVNAas a treatment option for patients with emotional distress under the COVID-19 pandemic or other emergentevents.
基金supported by the National Natural Science Foundation of China(Grant No.11804248,91859101,81971744,U1932107)the Foundation of Tianjin University and Natural Science Foundation of Tianjin(Grant No.18JCQNJC03200)supported by National Science Foundation grant number ACI-1548562
文摘Metal clusters have attracted wide interests due to their unique electronic and optical properties,but the low luminescence quantum yield(QY)prevents them from potential biomedical applications.In this work,silver-doped Au nanoclusters(NCs)are shown to be able to improve the QY of metal clusters.We succeeded in synthesizing ultrabright glutathione(GSH)protected AuAg clusters with 10.8%QY by a one-pot route.Their florescence is about 7.5 times brighter than pure Au NCs,with super photostability and good biocompatibility in physiological environment.Based on density functional theory(DFT)calculations,we investigated the electronic structures and optical properties of the AuAg NCs.The results show that the increase of the density of states of the lowest unoccupied molecular orbital(LUMO)leads to the fluorescence enhancement.In addition,two-photon excitation fluorescence imaging has been performed to show their great potential for biomedicine.
基金This work was supported by the NIH(R01 AI160774,R01 AI123193,and R56 AG071256)the National Multiple Sclerosis Society(RG-1802-30483 to YYW)The figures were created using BioRender.com.
文摘Balanced immunity is pivotal for health and homeostasis.CD4+helper T(Th)cells are central to the balance between immune tolerance and immune rejection.Th cells adopt distinct functions to maintain tolerance and clear pathogens.Dysregulation of Th cell function often leads to maladies,including autoimmunity,inflammatory disease,cancer,and infection.Regulatory T(Treg)and Th17 cells are critical Th cell types involved in immune tolerance,homeostasis,pathogenicity,and pathogen clearance.It is therefore critical to understand how Treg and Th17 cells are regulated in health and disease.Cytokines are instrumental in directing Treg and Th17 cell function.The evolutionarily conserved TGF-β(transforming growth factor-β)cytokine superfamily is of particular interest because it is central to the biology of both Treg cells that are predominantly immunosuppressive and Th17 cells that can be proinflammatory,pathogenic,and immune regulatory.How TGF-βsuperfamily members and their intricate signaling pathways regulate Treg and Th17 cell function is a question that has been intensely investigated for two decades.Here,we introduce the fundamental biology of TGF-βsuperfamily signaling,Treg cells,and Th17 cells and discuss in detail how the TGF-βsuperfamily contributes to Treg and Th17 cell biology through complex yet ordered and cooperative signaling networks.
基金supported by the National Science and Technology Major Project,China(No.2017-II-0004-0016)。
文摘Geometric and working condition uncertainties are inevitable in a compressor,deviating the compressor performance from the design value.It’s necessary to explore the influence of geometric uncertainty on performance deviation under different working conditions.In this paper,the geometric uncertainty influences at near stall,peak efficiency,and near choke conditions under design speed and low speed are investigated.Firstly,manufacturing geometric uncertainties are analyzed.Next,correlation models between geometry and performance under different working conditions are constructed based on a neural network.Then the Shapley additive explanations(SHAP)method is introduced to explain the output of the neural network.Results show that under real manufacturing uncertainty,the efficiency deviation range is small under the near stall and peak efficiency conditions.However,under the near choke conditions,efficiency is highly sensitive to flow capacity changes caused by geometric uncertainty,leading to a significant increase in the efficiency deviation amplitude,up to a magnitude of-3.6%.Moreover,the tip leading-edge radius and tip thickness are two main factors affecting efficiency deviation.Therefore,to reduce efficiency uncertainty,a compressor should be avoided working near the choke condition,and the tolerances of the tip leading-edge radius and tip thickness should be strictly controlled.
基金We gratefully acknowledge the financial support from the Ministry of Science and Technology of China (Nos. 2016YFA0204100 and 2016YFA0200200), the National Natural Science Foundation of China (Nos. 81471786, 21573220, and 21303191), the strategic Priority Research Program of the Chinese Academy of Sciences (No. XDA09030100), Natural Science Foundation of Tianjin (No. 13JCQNJC13500).
文摘Normal levels of oxygen free radicals play an important role in cellular signal transduction, redox homeostasis, regulatory pathways, and metabolic processes. However, radiolysis of water induced by high-energy radiation can produce excessive amounts of exogenous oxygen free radicals, which cause severe oxidative damages to all cellular components, disrupt cellular structures and signaling pathways, and eventually lead to death. Herein, we show that hybrid nanoshields based on single-layer graphene encapsulating metal nanoparticles exhibit high catalytic activity in scavenging oxygen superoxide (·O2^-), hydroxyl (·OH), and hydroperoxyl (HO2·) free radicals via electron transfer between the single-layer graphene and the metal core, thus achieving biocatalytic scavenging both in vitro and in vivo. The levels of the superoxide enzyme, DNA, and reactive oxygen species measured in vivo dearly show that the nanoshields can efficiently eliminate harmful oxygen free radicals at the cellular level, both in organs and circulating blood. Moreover, the nanoshields lead to an increase in the overall survival rate of gamma ray-irradiated mice to up to 90%, showing the great potential of these systems as protective agents against ionizing radiation.
基金supported by the National Natural Science Foundation of China(81471786)the Independent Innovation Foundation of Tianjin University
文摘Ionizing radiation produces excessive reactive oxygen species (ROS) which impose detrimental effects on biological systems. Thus, it is important to explore clinically safe and efficacious radioprotection agents to scavenge ROS and reduce the risks of radiotherapy. Recently, emerging catalytic nanomaterials such as sulfide nanomaterials have shown capability of clearing ROS in vivo by unique electron transfers between atoms, but their catalytic activities are yet suboptimal. As such, there is an unmet need to improve cat- alytic properties for stronger antioxidant activities and radiation protection. Herein, we prepared ultra- small Au-MoS2 clusters (~2.Snm) and they showed enhanced catalytic properties via gold intercalation facilitating increased active sites and synergistic effects. Electrocatalysis results revealed that the catalytic activity of Au-MoS2 towards 1-1202 was superior to ultrasmall MoS2 without Au. As a result, we found that improving the electrocatalytic property of Au-MoS2 can effectively enhance corre- sponding antioxidant activities and radioprotection effects in vivo. In addition, Au-MoS2 also showed sig- nificant radioprotection in vitro and dramatically reduced the excess of radiation-induced adverse ROS. It also rescued radiation-induced DNA damages and protected the bone marrow hematopoietic system from ionizing radiation.
基金supported by the National Natural Science Foundation of China (Nos.81673106,81471786 and 91859101)CAMS Innovation Fund for Medical Science (No.2017-12M-1012)
文摘Radiotherapy is one of the most important clinical cancer treatments,which works mainly by delive ring a prescribed radiation dose to the tumor tissues.However,high doses of radiation may also lead many irreversible damages to the surrounding normal tissues.Thereby,how to effectively reduce these sideeffects has been a significant factor in influencing cancer therapeutic effect.In this work,we synthesized the hollow PtPd nanocubes with high-index facets,and investigated the radiation protection capability in vitro and in vivo.Our results showed the PtPd nanocrystals can decrease the ROS level and improve the survival rate of radiated cells.Meanwhile,survival rate of radiated mice can significantly increase from 0 to 30%after PtPd treatment.Consequently,the enzyme and ROS level in radiated mice can be recovered.