[Objectives]This study was conducted to enrich grape varieties.[Methods]The growth and fruit quality of grape with different rootstock and scion combinations were compared and analyzed taking CR2,CR3 and CR9 as rootst...[Objectives]This study was conducted to enrich grape varieties.[Methods]The growth and fruit quality of grape with different rootstock and scion combinations were compared and analyzed taking CR2,CR3 and CR9 as rootstocks and‘Huangjinmi’as grafted seedlings and own-rooted seedlings as control.[Results]The comprehensive scores of‘Huangjinmi’grape with different rootstock and scion combinations showed an order of HJM/CR9,HJM/CR2 and HJM/CR3 from high to low.The three rootstock and scion combinations obviously promoted the growth and adaptability of grape trees,increased fruit size and improved fruit quality.Through the quality analysis of untreated and treated fruits,HJM/CR9 was superior to ZGM.Different fruit management measures can be adopted for‘Huangjinmi’grape to produce fruit with different quality according to market demand.[Conclusions]This study has a guiding significance for screening grape varieties suitable for adverse environments such as high soil viscosity,high temperature and high humidity.展开更多
Jujube witches’broom(JWB)phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission.In previous research,...Jujube witches’broom(JWB)phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission.In previous research,two JWB effectors,SJP1 and SJP2,were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux.However,the pathogenesis of JWB disease remains largely unknown.Here,tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection.JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence,including auxin,abscisic acid(ABA),ethylene,jasmonic acid,and salicylic acid.JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds.ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant.Furthermore,the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube.Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli.In addition,ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling,especially by binding to and suppressing ABA receptors.Therefore,these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion,providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.展开更多
Many bridge design specifications consider multi-lane factors(MLFs)a critical component of the traffic load model.Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over m...Many bridge design specifications consider multi-lane factors(MLFs)a critical component of the traffic load model.Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over multiple lanes.However,these disparities are not considered in current specifications.To address this drawback,a multi-coefficient MLF model was developed based on an improved probabilistic statistical approach that considers the presence of multiple trucks.The proposed MLF model and approach were calibrated and demonstrated through an example site.The model sensitivity analysis demonstrated the significant influence of lane disparity of truck traffic volume and truck weight distribution on the MLF.Using the proposed approach,the experimental site study yielded MLFs comparable with those directly calculated using traffic load effects.The exclusion of overloaded trucks caused the proposed approach,existing design specifications,and conventional approach of ignoring lane load disparity to generate comparable MLFs,while the MLFs based on the proposed approach were the most comprehensive.The inclusion of overloaded trucks caused the conventional approach and design specifications to overestimate the MLFs significantly.Finally,the benefits of the research results to bridge practitioners were discussed.展开更多
基金Supported by National Modern Agriculture Industry Technology System Construction Project(CARS-29-14)Chuzhou Science and Technology Planning Project(2022ZN004)+1 种基金Anhui Provincial Science and Technology Mission Project(2023tpt027)Special Project of Chief Expert Studio of Agricultural Industry in Hefei City,Anhui Province(2023).
文摘[Objectives]This study was conducted to enrich grape varieties.[Methods]The growth and fruit quality of grape with different rootstock and scion combinations were compared and analyzed taking CR2,CR3 and CR9 as rootstocks and‘Huangjinmi’as grafted seedlings and own-rooted seedlings as control.[Results]The comprehensive scores of‘Huangjinmi’grape with different rootstock and scion combinations showed an order of HJM/CR9,HJM/CR2 and HJM/CR3 from high to low.The three rootstock and scion combinations obviously promoted the growth and adaptability of grape trees,increased fruit size and improved fruit quality.Through the quality analysis of untreated and treated fruits,HJM/CR9 was superior to ZGM.Different fruit management measures can be adopted for‘Huangjinmi’grape to produce fruit with different quality according to market demand.[Conclusions]This study has a guiding significance for screening grape varieties suitable for adverse environments such as high soil viscosity,high temperature and high humidity.
基金supported by the National Natural Science Foundation of China(31971687 and 32002007)the Anhui Province Key Research and Development Program(202004a06020008)+1 种基金the Natural Science Foundation of Anhui Province(2008085QC127)the Natural Science Foundation of Anhui Provincial Department of Education(KJ2019A0186).
文摘Jujube witches’broom(JWB)phytoplasmas parasitize the sieve tubes of diseased phloem and cause an excessive proliferation of axillary shoots from dormant lateral buds to favour their transmission.In previous research,two JWB effectors,SJP1 and SJP2,were identified to induce lateral bud outgrowth by disrupting ZjBRC1-mediated auxin flux.However,the pathogenesis of JWB disease remains largely unknown.Here,tissue-specific transcriptional reprogramming was examined to gain insight into the genetic mechanisms acting inside jujube lateral buds under JWB phytoplasma infection.JWB phytoplasmas modulated a series of plant signalling networks involved in lateral bud development and defence,including auxin,abscisic acid(ABA),ethylene,jasmonic acid,and salicylic acid.JWB-induced bud outgrowth was accompanied by downregulation of ABA synthesis within lateral buds.ABA application rescued the bushy appearances of transgenic Arabidopsis overexpressing SJP1 and SJP2 in Col-0 and ZjBRC1 in the brc1-2 mutant.Furthermore,the expression of ZjBRC1 and ABA-related genes ZjHB40 and ZjNCED3 was negatively correlated with lateral main bud outgrowth in decapitated healthy jujube.Molecular evidence showed that ZjBRC1 interacted with ZjBRC2 via its N-terminus to activate ZjHB40 and ZjNCED3 expression and ABA accumulation in transgenic jujube calli.In addition,ZjBRC1 widely regulated differentially expressed genes related to ABA homeostasis and ABA signalling,especially by binding to and suppressing ABA receptors.Therefore,these results suggest that JWB phytoplasmas hijack the ZjBRC1-mediated ABA pathways to stimulate lateral bud outgrowth and expansion,providing a strategy to engineer plants resistant to JWB phytoplasma disease and regulate woody plant architecture to promote crop yield and quality.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51808148)Natural Science Foundation of Guangdong Province,China(No.2019A1515010701)Guangzhou Municipal Science and Technology Project(No.201904010188).
文摘Many bridge design specifications consider multi-lane factors(MLFs)a critical component of the traffic load model.Measured multi-lane traffic data generally exhibit significant lane disparities in traffic loads over multiple lanes.However,these disparities are not considered in current specifications.To address this drawback,a multi-coefficient MLF model was developed based on an improved probabilistic statistical approach that considers the presence of multiple trucks.The proposed MLF model and approach were calibrated and demonstrated through an example site.The model sensitivity analysis demonstrated the significant influence of lane disparity of truck traffic volume and truck weight distribution on the MLF.Using the proposed approach,the experimental site study yielded MLFs comparable with those directly calculated using traffic load effects.The exclusion of overloaded trucks caused the proposed approach,existing design specifications,and conventional approach of ignoring lane load disparity to generate comparable MLFs,while the MLFs based on the proposed approach were the most comprehensive.The inclusion of overloaded trucks caused the conventional approach and design specifications to overestimate the MLFs significantly.Finally,the benefits of the research results to bridge practitioners were discussed.