This study was conducted to investigate the effects of fermented mixed feed(FMF)on growth performance,carcass traits,meat quality,muscle amino acid and fatty acid composition and mRNA expression levels of genes relate...This study was conducted to investigate the effects of fermented mixed feed(FMF)on growth performance,carcass traits,meat quality,muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs.In the present study,144 finishing pigs(Duroc×Berkshire×Jiaxing Black)were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen.The dietary treatments included a basal diet(CON),a basal diet+5%FMF and a basal diet+10%FMF.The experiment lasted 38 d after 4 d of acclimation.The results showed that 5%and 10%FMF significantly increased the average daily gain(ADG)of the females but not the males(P<0.05),but FMF supplementation showed no impact on carcass traits.Moreover,10%FMF supplementation increased the meat color45 min and meat color24 h values,while it decreased the shear force relative to CON(P<0.05).In addition,10%FMF significantly increased the contents of flavor amino acids(FAA),total essential AA(EAA),total non-EAA(NEAA)and total AA relative to CON(P<0.05).Furthermore,the diet supplemented with 10%FMF significantly increased the concentration of n-3 polyunsaturated fatty acids(PUFA),n-6 PUFA and total PUFA,and the PUFA to saturated fatty acids ratio(P<0.05),suggesting that FMF supplementation increased meat quality.Moreover,compared with the CON,10%FMF supplementation increased the mRNA expression of lipogenic genes,including CEBPα,PPARγ,SREBP1 and FABP4,and upregulated the expression of unsaturated fatty acid synthesis(ACAA1 and FADS2).Together,our results suggest that 10%FMF dietary supplementation improved the female pigs’growth performance,improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs.This study provides a reference for the production of high-quality pork.展开更多
Cell-cell communication is critical for bacterial survival in natural habitats,in which miscellaneous regulatory networks are encompassed.However,elucidating the interaction networks of a microbial community has been ...Cell-cell communication is critical for bacterial survival in natural habitats,in which miscellaneous regulatory networks are encompassed.However,elucidating the interaction networks of a microbial community has been hindered by the population complexity.This study reveals thatγ-butyrolactone(GBL)molecules from Streptomyces species,the major antibiotic producers,can directly bind to the acyl-homoserine lactone(AHL)receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing(QS)system.Subsequently,the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled.Based on the cross-talk between GBL and AHL signaling systems,combinatorial regulatory circuits(CRC)are designed and proved to be workable in Escherichia coli(E.coli).It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules.These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.展开更多
基金This work was partially supported by the National Key R&D Program of China(2021YFC2103005)the Zhejiang Provincial Key R&D Program of China(2021C02008).
文摘This study was conducted to investigate the effects of fermented mixed feed(FMF)on growth performance,carcass traits,meat quality,muscle amino acid and fatty acid composition and mRNA expression levels of genes related to lipid metabolism in finishing pigs.In the present study,144 finishing pigs(Duroc×Berkshire×Jiaxing Black)were randomly allocated to 3 dietary treatments with 4 replicate pens per group and 12 pigs per pen.The dietary treatments included a basal diet(CON),a basal diet+5%FMF and a basal diet+10%FMF.The experiment lasted 38 d after 4 d of acclimation.The results showed that 5%and 10%FMF significantly increased the average daily gain(ADG)of the females but not the males(P<0.05),but FMF supplementation showed no impact on carcass traits.Moreover,10%FMF supplementation increased the meat color45 min and meat color24 h values,while it decreased the shear force relative to CON(P<0.05).In addition,10%FMF significantly increased the contents of flavor amino acids(FAA),total essential AA(EAA),total non-EAA(NEAA)and total AA relative to CON(P<0.05).Furthermore,the diet supplemented with 10%FMF significantly increased the concentration of n-3 polyunsaturated fatty acids(PUFA),n-6 PUFA and total PUFA,and the PUFA to saturated fatty acids ratio(P<0.05),suggesting that FMF supplementation increased meat quality.Moreover,compared with the CON,10%FMF supplementation increased the mRNA expression of lipogenic genes,including CEBPα,PPARγ,SREBP1 and FABP4,and upregulated the expression of unsaturated fatty acid synthesis(ACAA1 and FADS2).Together,our results suggest that 10%FMF dietary supplementation improved the female pigs’growth performance,improved the meat quality and altered the profiles of muscle fatty acids and amino acids in finishing pigs.This study provides a reference for the production of high-quality pork.
基金supported by the National Key Research and Development Program of China(2018YFA0901900 and 2020YFA0907700)the National Natural Science Foundation of China(31771378 and 31800029)。
文摘Cell-cell communication is critical for bacterial survival in natural habitats,in which miscellaneous regulatory networks are encompassed.However,elucidating the interaction networks of a microbial community has been hindered by the population complexity.This study reveals thatγ-butyrolactone(GBL)molecules from Streptomyces species,the major antibiotic producers,can directly bind to the acyl-homoserine lactone(AHL)receptor of Chromobacterium violaceum and influence violacein production controlled by the quorum sensing(QS)system.Subsequently,the widespread responses of more Gram-negative bacterial AHL receptors to Gram-positive Streptomyces signaling molecules are unveiled.Based on the cross-talk between GBL and AHL signaling systems,combinatorial regulatory circuits(CRC)are designed and proved to be workable in Escherichia coli(E.coli).It is significant that the QS systems of Gram-positive and Gram-negative bacteria can be bridged via native Streptomyces signaling molecules.These findings pave a new path for unlocking the comprehensive cell-cell communications in microbial communities and facilitate the exploitation of innovative regulatory elements for synthetic biology.