Soy protein isolate(SPI)biopolymeric films were prepared by adding different contents of mandelic acid(1 to 5%wrt SPI)to glycerol plasticized SPI by solution casting method.Also,SPI was fermented by Bacillus subtilis ...Soy protein isolate(SPI)biopolymeric films were prepared by adding different contents of mandelic acid(1 to 5%wrt SPI)to glycerol plasticized SPI by solution casting method.Also,SPI was fermented by Bacillus subtilis to get fermented SPI films by solution casting.Molecular mass determination of mandelic acid incorporated and fermented SPI films was carried out by sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE).Mandelic acid incorporated and fermented SPI films were characterized by Fourier-transform infrared spectroscopy(FT-IR),dynamic mechanical analysis(DMA),tensile strength,water uptake and optical transmittance studies.Results indicated that incorporation of mandelic acid in SPI resulted in high tensile strength(8.03 MPa)and highα-relaxation(Tα)as well as low water uptake.On the other hand,films cannot be prepared from fermented SPI with SPI contents of 8%and 12%.However,film from fermented SPI with 16%SPI content could be prepared but it exhibited low tensile strength(3.18 MPa)and low Tαas well as high water uptake.The resulting mandelic acid incorporated SPI films were also subjected to antimicrobial studies.At all the concentration of mandelic acid,we can easily observe the antimicrobial effect in mandelic acid incorporated SPI films unlike fermented SPI films.This work will be helpful in fabricating antimicrobial SPI film from renewable resources.展开更多
ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride,selenium powder and ethylene diamine.The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as ...ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride,selenium powder and ethylene diamine.The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as well as morphological characterization was done by scanning electron microscope(SEM).The crystallite size after synthesis was obtained around 30 nm for pure ZnSe nanocrystallites.However,from SEM micrograph,agglomerated ZnSe nanoparticles of irregular shapes were observed.The as-synthesized ZnSe nanoparticles at different contents(1 to 5%w/w w.r.t SPI)were incorporated into soy protein isolate(SPI)to produce reinforced SPI films by solution casting method.The ZnSe nanoparticles incorporated SPI suspensions were subjected to molecular mass and specific conductivity studies.Neat and ZnSe nanoparticles incorporated SPI films were structurally and mechanically characterized by FT-IR and tensile properties,respectively.Transmittance and water uptake studies were also carried out for ZnSe nanoparticles incorporated SPI films.The tensile strength and modulus increased from 5.80 MPa to 10.06 MPa and 18.84 MPa to 94.70 MPa with the increase in the contents of ZnSe nanoparticles from 0 to 5%.Moreover,the results also revealed a good antibacterial effect in ZnSe nanoparticles incorporated SPI film.The main application of nanoparticles incorporated SPI film will be in the area of biodegradable packaging.展开更多
文摘Soy protein isolate(SPI)biopolymeric films were prepared by adding different contents of mandelic acid(1 to 5%wrt SPI)to glycerol plasticized SPI by solution casting method.Also,SPI was fermented by Bacillus subtilis to get fermented SPI films by solution casting.Molecular mass determination of mandelic acid incorporated and fermented SPI films was carried out by sodium dodecyl sulphate-polyacrylamide gel electrophoresis(SDS-PAGE).Mandelic acid incorporated and fermented SPI films were characterized by Fourier-transform infrared spectroscopy(FT-IR),dynamic mechanical analysis(DMA),tensile strength,water uptake and optical transmittance studies.Results indicated that incorporation of mandelic acid in SPI resulted in high tensile strength(8.03 MPa)and highα-relaxation(Tα)as well as low water uptake.On the other hand,films cannot be prepared from fermented SPI with SPI contents of 8%and 12%.However,film from fermented SPI with 16%SPI content could be prepared but it exhibited low tensile strength(3.18 MPa)and low Tαas well as high water uptake.The resulting mandelic acid incorporated SPI films were also subjected to antimicrobial studies.At all the concentration of mandelic acid,we can easily observe the antimicrobial effect in mandelic acid incorporated SPI films unlike fermented SPI films.This work will be helpful in fabricating antimicrobial SPI film from renewable resources.
文摘ZnSe nanoparticles have been synthesized by microwave assisted method by using zinc chloride,selenium powder and ethylene diamine.The synthesized nanoparticles have been characterized structurally by FT-IR and XRD as well as morphological characterization was done by scanning electron microscope(SEM).The crystallite size after synthesis was obtained around 30 nm for pure ZnSe nanocrystallites.However,from SEM micrograph,agglomerated ZnSe nanoparticles of irregular shapes were observed.The as-synthesized ZnSe nanoparticles at different contents(1 to 5%w/w w.r.t SPI)were incorporated into soy protein isolate(SPI)to produce reinforced SPI films by solution casting method.The ZnSe nanoparticles incorporated SPI suspensions were subjected to molecular mass and specific conductivity studies.Neat and ZnSe nanoparticles incorporated SPI films were structurally and mechanically characterized by FT-IR and tensile properties,respectively.Transmittance and water uptake studies were also carried out for ZnSe nanoparticles incorporated SPI films.The tensile strength and modulus increased from 5.80 MPa to 10.06 MPa and 18.84 MPa to 94.70 MPa with the increase in the contents of ZnSe nanoparticles from 0 to 5%.Moreover,the results also revealed a good antibacterial effect in ZnSe nanoparticles incorporated SPI film.The main application of nanoparticles incorporated SPI film will be in the area of biodegradable packaging.