Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.I...Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.展开更多
Topological magnetism with strong robustness,nanoscale dimensions and ultralow driving current density(106 A/m^(2))is promising for applications in information sensing,storage,and processing,and thus sparking widespre...Topological magnetism with strong robustness,nanoscale dimensions and ultralow driving current density(106 A/m^(2))is promising for applications in information sensing,storage,and processing,and thus sparking widespread research interest.Exploring candidate material systems with nanoscale size and easily tunable properties is a key for realizing practical topological magnetism-based spintronic devices.Here,we propose a class of ultrathin heterostructures,Fe/Bi_(2)O_(2)X(X=S,Se,Te)by deposing metal Fe on quasi-two-dimensional(2D)bismuth oxychalcogenides Bi_(2)O_(2)X(X=S,Se,Te)with excellent ferroelectric/ferroelastic properties.Large Dzyaloshinskii–Moriya interaction(DMI)and topological magnetism can be realized.Our atomistic spin dynamics simulations demonstrate that field-free vortex–antivortex loops and sub-10 nm skyrmions exist in Fe/Bi_(2)O_(2)S and Fe/Bi_(2)O_(2)Se interfaces,respectively.These results provide a possible strategy to tailor topological magnetism in ultrathin magnets/2D materials interfaces,which is extremely vital for spintronics applications.展开更多
Based on the Gross–Pitaevskii equation,we theoretically investigate exciton Bose–Einstein condensation(BEC)in transition metal dichalcogenide monolayers(TMDC-MLs)under in-plane magnetic fields.We observe that the in...Based on the Gross–Pitaevskii equation,we theoretically investigate exciton Bose–Einstein condensation(BEC)in transition metal dichalcogenide monolayers(TMDC-MLs)under in-plane magnetic fields.We observe that the in-plane magnetic fields exert a strong influence on the exciton BEC wave functions in TMDC-MLs because of the mixing of the bright and dark exciton states via Zeeman effect.This leads to the brightening of the dark exciton BEC states.The competition between the dipole–dipole interactions caused by the long-range Coulomb interaction and the Zeeman effect induced by the in-plane magnetic fields can effectively regulate dark exciton BEC states.Our findings emphasize the utility of TMD-MLs as platforms for investigating collective phenomenon involving excited states.展开更多
2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plan...2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plane,which is unfavorable for surface adsorption and reactions.Herein,we report a facile method to boost the HER activities of 2H-MoS_(2) by coupling with epitaxial Bi2Te3 topological insulator films.The as-obtained MoS_(2)/Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS_(2) structures,with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm^(−2) and a low Tafel slope of 58 mV dec−1.Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS_(2) layer.The delocalized sp-derived topological surface states could denote electrons to the MoS_(2) layer and activate the basal plane for hydrogen adsorption.This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts.展开更多
We study theoretically the exciton Bose–Einstein condensation and exciton vortices in a two-dimensional(2 D)perovskite(PEA)2 Pb I4 monolayer.Combining the first-principles calculations and the Keldysh model,the excit...We study theoretically the exciton Bose–Einstein condensation and exciton vortices in a two-dimensional(2 D)perovskite(PEA)2 Pb I4 monolayer.Combining the first-principles calculations and the Keldysh model,the exciton binding energy of in a(PEA)2 Pb I4 monolayer can approach hundreds of me V,which make it possible to observe the excitonic effect at room temperature.Due to the large exciton binding energy,and hence the high density of excitons,we find that the critical temperature of the exciton condensation could approach the liquid nitrogen regime.In the presence of perpendicular electric fields,the dipole-dipole interaction between excitons is found to drive the condensed excitons confined in(PEA)2 Pb I4 monolayer flakes into patterned vortices,as the evolution time of vortex patterns is comparable to the exciton lifetime.展开更多
Lupus nephritis(LN) has a high incidence in systemic lupus erythematosus(SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4^...Lupus nephritis(LN) has a high incidence in systemic lupus erythematosus(SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4^(+)CD8^(+)double positive T(DPT) lymphocytes and LN. The study included patients with SLE without renal impairment(SLE-NRI), LN, nephritic syndrome(NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed with peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in the LN group were significantly higher than that in the SLE-NRI group(t=4.012, P<0.001), NS group(t=3.240,P=0.001), and nephritis group(t=2.57, P=0.011). In the LN group, the risk of renal impairment increased significantly in a DPT cells proportion-dependent manner. The risk of LN was 5.136 times(95% confidence interval, 2.115–12.473) higher in cases with a high proportion of DPT cells than those whose proportion of DPT cells within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cell proportion.展开更多
A heterostructured electrocatalyst of small NiSe_(2) nanoparticles confined NiMoN nanorods(NiSe_(2)-NPs/NiMoN-NRs)is prepared to accelerate both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in...A heterostructured electrocatalyst of small NiSe_(2) nanoparticles confined NiMoN nanorods(NiSe_(2)-NPs/NiMoN-NRs)is prepared to accelerate both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in a same alkaline medium.The synergistic effects caused by the combination of merits derived from NiSe_(2) and NiMoN phases trigger an optimum electronic structure with high density of state at near Fermi level and enhance adsorption free energy,thereby resulting in excellent catalytic activities and strengthened working stability.The catalyst requires a low overpotential of 58 mV for HER and 241 mV for OER to reach 10 mA cm^(−2) in 1.0 M KOH electrolyte.A twoelectrode electrolyzer based on the developed catalyst shows outstanding cell voltage of 1.51 and 1.46 V to reach 10 mA cm^(−2) in 1.0 M and 30 wt%KOH solution at 25℃ for overall water splitting,respectively.In addition,the solardriven water splitting process delivers a high solar-to-H_(2) conversion efficiency of∼18.4%,impressively unveiling that the developed bifunctional catalyst is highly potential for overall water splitting to produce green hydrogen fuel.展开更多
We theoretically study the Casimir interaction between Weyl semimetals.When the distance a between semiinfinite Weyl semimetals is in the micrometer regime,the Casimir attraction can be enhanced by the chiral anomaly....We theoretically study the Casimir interaction between Weyl semimetals.When the distance a between semiinfinite Weyl semimetals is in the micrometer regime,the Casimir attraction can be enhanced by the chiral anomaly.The Casimir attraction depends sensitively on the relative orientations between the separations(b1,b2)of Weyl nodes in the Brillouin zone and show anisotropic behavior for the relative orientation of these separations(b1,b2)when they orient parallel to the interface.This anisotropy is quite larger than that in conventional birefringent materials.The Casimir force can be repulsive in the micrometer regime if the Weyl semimetal slabs are sufficiently thin and the direction of Weyl nodes separations(b1,b2)is perpendicular to the interface.The Casimir attraction between Weyl semimetal slabs decays slower than 1/a4 when the Weyl nodes separations b1 and b2 are both parallel to the interface.展开更多
We propose that the hexagonal crystal form of MoC is a stable and new type of topological semimetal. It hosts an exotic Fermi surface consisting of two concentric nodal rings in the presence of spin-orbit coupling, an...We propose that the hexagonal crystal form of MoC is a stable and new type of topological semimetal. It hosts an exotic Fermi surface consisting of two concentric nodal rings in the presence of spin-orbit coupling, and possesses four pairs of triply degenerate points (TDPs) in the vicinity of the Fermi energy. The coexistence of the nodal ring Fermi surface and TDPs in MoC leads to extraordinary properties such as distinguishable drumhead surface states and manipulatable new fermions, which make MoC a fertile platform for in-depth understanding of topological phenomena and a potential candidate material for topological electronic devices.展开更多
We investigate theoretically the Casimir interaction between two parallel two-dimensional electron gases(2DEGs)with Rashba and Dresselhaus spin-orbit interactions(SOIs),based on the quantum field theory.We derive an a...We investigate theoretically the Casimir interaction between two parallel two-dimensional electron gases(2DEGs)with Rashba and Dresselhaus spin-orbit interactions(SOIs),based on the quantum field theory.We derive an analytical expression for the polarization tensor and obtain the solution to the motion equation of the electromagnetic(EM)field.We calculate the CasimirLifshitz torque(CLT)between two parallel 2DEGs with Rashba and Dresselhaus SOIs,which can be tuned by changing the relative strength between two SOIs.The anisotropic Casimir energy between 2DEGs caused by the interplay between the SOIs of 2DEGs offers a new origin of CLT and a new type of optoelectronic device.展开更多
Coronavirus disease 2019 (COVID-19) is now pandemic worldwide and has heavily overloaded hospitals in Wuhan City, China during the time between late January and February. We reported the clinical features and therapeu...Coronavirus disease 2019 (COVID-19) is now pandemic worldwide and has heavily overloaded hospitals in Wuhan City, China during the time between late January and February. We reported the clinical features and therapeutic characteristics of moderate COVID-19 cases in Wuhan that were treated via the integration of traditional Chinese medicine (TCM) and Western medicine. We collected electronic medical record (EMR) data, which included the full clinical profiles of patients, from a designated TCM hospital in Wuhan. The structured data of symptoms and drugs from admission notes were obtained through an information extraction process. Other key clinical entities were also confirmed and normalized to obtain information on the diagnosis, clinical treatments, laboratory tests, and outcomes of the patients. A total of 293 COVID-19 inpatient cases, including 207 moderate and 86 (29.3%) severe cases, were included in our research. Among these cases, 238 were discharged, 31 were transferred, and 24 (all severe cases) died in the hospital. Our COVID-19 cases involved elderly patients with advanced ages (57 years on average) and high comorbidity rates (61%). Our results reconfirmed several well-recognized risk factors, such as age, gender (male), and comorbidities, as well as provided novel laboratory indications (e.g., cholesterol) and TCM-specific phenotype markers (e.g., dull tongue) that were relevant to COVID-19 infections and prognosis. In addition to antiviral/antibiotics and standard supportive therapies, TCM herbal prescriptions incorporating 290 distinct herbs were used in 273 (93%) cases. The cases that received TCM treatment had lower death rates than those that did not receive TCM treatment (17/273= 6.2% vs. 7/20= 35%, P = 0.0004 for all cases;17/77= 22% vs. 7/9= 77.7%, P = 0.002 for severe cases). The TCM herbal prescriptions used for the treatment of COVID-19 infections mainly consisted of Pericarpium Citri Reticulatae, Radix Scutellariae, Rhizoma Pinellia, and their combinations, which reflected the practical TCM principles (e.g., clearing heat and dampening phlegm). Lastly, 59% of the patients received treatment, including antiviral, antibiotics, and Chinese patent medicine, before admission. This situation might have some effects on symptoms, such as fever and dry cough. By using EMR data, we described the clinical features and therapeutic characteristics of 293 COVID-19 cases treated via the integration of TCM herbal prescriptions and Western medicine. Clinical manifestations and treatments before admission and in the hospital were investigated. Our results preliminarily showed the potential effectiveness of TCM herbal prescriptions and their regularities in COVID-19 treatment.展开更多
Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were conf...Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-II semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.展开更多
Different than covalently bonded magnetic multilayer systems,high-quality interfaces without dangling bonds in van der Waals(vd W)junctions of two-dimensional(2D)layered magnetic materials offer opportunities to reali...Different than covalently bonded magnetic multilayer systems,high-quality interfaces without dangling bonds in van der Waals(vd W)junctions of two-dimensional(2D)layered magnetic materials offer opportunities to realize novel functionalities.Here,we report the fabrication of multi-state vertical spin valves without spacer layers by using vd W homo-junctions in which exfoliated Fe3GeTe2 nanoflakes act as ferromagnetic electrodes and/or interlayers.We demonstrate the typical behavior of two-state and threestate magnetoresistance for devices with two and three Fe3GeTe2 nanoflakes,respectively.Distinct from traditional spin valves with sandwich structures,our novel homo-junction-based spin-valve structure allows the straightforward realization of multi-state magnetic devices.Our work demonstrates the possibility of extend multi-state,non-volatile spin information to 2 D magnetic homo-junctions,and it emphasizes the utility of vd W interface as a fundamental building block for spintronic devices.展开更多
Circulating tumor DNA(ctDNA)is a critical biomarker not only important for the early detection of tumors but also invaluable for personalized treatments.Currently ctDNA detection relies on sequencing.Here,a platform t...Circulating tumor DNA(ctDNA)is a critical biomarker not only important for the early detection of tumors but also invaluable for personalized treatments.Currently ctDNA detection relies on sequencing.Here,a platform termed three-dimensional-coded interlocked DNA rings(3D-coded ID rings)was created for multiplexed ctDNA identification.The ID rings provide a ctDNA recognition ring that is physically interlocked with a reporter ring.The specific binding of ctDNA to the recognition ring initiates target-responsive cutting via a restriction endonuclease;the cutting then triggers rolling circle amplification on the reporter ring.The signals are further integrated with internal 3D codes for multiplexed readouts.ctDNAs from non-invasive clinical specimens including plasma,feces,and urine were detected and validated at a sensitivity much higher than those obtained through sequencing.This 3D-coded ID ring platform can detect any multiple DNA fragments simultaneously without sequencing.We envision that our platform will facilitate the implementation of future personalized/precision medicine.展开更多
We analytically study the electronic structure and optical properties of zigzag-edged phosphorene nanoribbons(ZPNRs) using the tight-binding Hamiltonian and Kubo formula. By directly solving the discrete Schrodinger e...We analytically study the electronic structure and optical properties of zigzag-edged phosphorene nanoribbons(ZPNRs) using the tight-binding Hamiltonian and Kubo formula. By directly solving the discrete Schrodinger equation, we obtain the energy spectra and wavefunctions for N-ZPNR(where N is the number of transverse zigzag atomic chains) and classify the eigenstates according to the lattice symmetry. Then, we obtain the optical transition selection rule of ZPNRs on the basis of symmetry analysis and analytical expressions of optical transition matrix elements. Under incident light that is linearly polarized along the ribbon, we determine that the optical transition selection rule for N-ZPNR with even-or odd-N is qualitatively different. Specifically, for even-N ZPNRs, the inter-(intra-) band selection rule is ?n =odd(even) because the parity of the wavefunction corresponding to the n-th subband in the conduction(valence) band is(-1)~n[(-1)~((n+1))] owing to the presence of C(2x) symmetry. However, the optical transitions between any subbands are possible owing to the absence of C(2x) symmetry. Our results provide a further understanding on the electronic states and optical properties of ZPNRs, which are useful for explaining the optical experiment data on ZPNR samples.展开更多
Objective:To validate two proposed coronavirus disease 2019(COVID-19)prognosis models,analyze the characteristics of different models,consider the performance of models in predicting different outcomes,and provide new...Objective:To validate two proposed coronavirus disease 2019(COVID-19)prognosis models,analyze the characteristics of different models,consider the performance of models in predicting different outcomes,and provide new insights into the development and use of artificial intelligence(AI)predictive models in clinical decision-making for COVID-19 and other diseases.Materials and Methods:We compared two proposed prediction models for COVID-19 prognosis that use a decision tree and logistic regression modeling.We evaluated the effectiveness of different model-building strategies using laboratory tests and/or clinical record data,their sensitivity and robustness to the timings of records used and the presence of missing data,and their predictive performance and capabilities in single-site and multicenter settings.Results:The predictive accuracies of the two models after retraining were improved to 93.2% and 93.9%,compared with that of the models directly used,with accuracies of 84.3% and 87.9%,indicating that the prediction models could not be used directly and require retraining based on actual data.In addition,based on the prediction model,new features obtained by model comparison and literature evidence were transferred to integrate the new models with better performance.Conclusions:Comparing the characteristics and differences of datasets used in model training,effective model verification,and a fusion of models is necessary in improving the performance of AI models.展开更多
The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac po...The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ~50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation.展开更多
文摘Passive detection of low-slow-small(LSS)targets is easily interfered by direct signal and multipath clutter,and the traditional clutter suppression method has the contradiction between step size and convergence rate.In this paper,a frequency domain clutter suppression algorithm based on sparse adaptive filtering is proposed.The pulse compression operation between the error signal and the input reference signal is added to the cost function as a sparsity constraint,and the criterion for filter weight updating is improved to obtain a purer echo signal.At the same time,the step size and penalty factor are brought into the adaptive iteration process,and the input data is used to drive the adaptive changes of parameters such as step size.The proposed algorithm has a small amount of calculation,which improves the robustness to parameters such as step size,reduces the weight error of the filter and has a good clutter suppression performance.
基金the National Key Research and Development Program of China(Grant Nos.2022YFA1405100,2022YFA1403601,2020AAA0109005,and 2023YFB4502100)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province(Grant No.2022C01053)+1 种基金the National Natural Science Foundation of China(Grant Nos.12174405,12204497,12327806,and 62074063)Shenzhen Science and Technology Program(Grant No.JCYJ20220818103410022).
文摘Topological magnetism with strong robustness,nanoscale dimensions and ultralow driving current density(106 A/m^(2))is promising for applications in information sensing,storage,and processing,and thus sparking widespread research interest.Exploring candidate material systems with nanoscale size and easily tunable properties is a key for realizing practical topological magnetism-based spintronic devices.Here,we propose a class of ultrathin heterostructures,Fe/Bi_(2)O_(2)X(X=S,Se,Te)by deposing metal Fe on quasi-two-dimensional(2D)bismuth oxychalcogenides Bi_(2)O_(2)X(X=S,Se,Te)with excellent ferroelectric/ferroelastic properties.Large Dzyaloshinskii–Moriya interaction(DMI)and topological magnetism can be realized.Our atomistic spin dynamics simulations demonstrate that field-free vortex–antivortex loops and sub-10 nm skyrmions exist in Fe/Bi_(2)O_(2)S and Fe/Bi_(2)O_(2)Se interfaces,respectively.These results provide a possible strategy to tailor topological magnetism in ultrathin magnets/2D materials interfaces,which is extremely vital for spintronics applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.92265203 and 11974340)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB0460000,XDB28000000,and XDPB22)+1 种基金the Chinese Academy of Sciences(Grant No.QYZDJSSW-SYS001)the National Key R&D Program of China(Grant No.2018YFA0306101).
文摘Based on the Gross–Pitaevskii equation,we theoretically investigate exciton Bose–Einstein condensation(BEC)in transition metal dichalcogenide monolayers(TMDC-MLs)under in-plane magnetic fields.We observe that the in-plane magnetic fields exert a strong influence on the exciton BEC wave functions in TMDC-MLs because of the mixing of the bright and dark exciton states via Zeeman effect.This leads to the brightening of the dark exciton BEC states.The competition between the dipole–dipole interactions caused by the long-range Coulomb interaction and the Zeeman effect induced by the in-plane magnetic fields can effectively regulate dark exciton BEC states.Our findings emphasize the utility of TMD-MLs as platforms for investigating collective phenomenon involving excited states.
基金This work was financially supported by the European Research Council(ERC Advanced Grant No.291472'Idea Heusler1)and the ERC Advanced Grant(No.742068)TOPMAT.K.C.was funded by the National Natural Science Foundation of China(Grant No.12074038)J.H.and S.P.were supported by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)No.314790414.
文摘2H-MoS_(2) is a well-studied and promising non-noble metal electrocatalyst for heterogeneous reactions,such as the hydrogen evolution reaction(HER).The performance is largely limited by the chemically inert basal plane,which is unfavorable for surface adsorption and reactions.Herein,we report a facile method to boost the HER activities of 2H-MoS_(2) by coupling with epitaxial Bi2Te3 topological insulator films.The as-obtained MoS_(2)/Bi2Te3/SrTiO3 catalyst exhibits prominent HER catalytic activities compared to that of pure MoS_(2) structures,with a 189 mV decrease in the overpotential required to reach a current density of 10 mA cm^(−2) and a low Tafel slope of 58 mV dec−1.Theoretical investigations suggest that the enhanced catalytic activity originates from the charge redistribution at the interface between the Bi2Te3topological insulator films and the MoS_(2) layer.The delocalized sp-derived topological surface states could denote electrons to the MoS_(2) layer and activate the basal plane for hydrogen adsorption.This study demonstrates the potential of manipulating topological surface states to design high-performance electrocatalysts.
基金Supported by the National Key R&D Programme of China(Grant Nos.2017YFA0303400 and 2016YFE0110000)the National Natural Science Foundation of China(Grant Nos.11574303 and 11504366)+1 种基金the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2018148)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘We study theoretically the exciton Bose–Einstein condensation and exciton vortices in a two-dimensional(2 D)perovskite(PEA)2 Pb I4 monolayer.Combining the first-principles calculations and the Keldysh model,the exciton binding energy of in a(PEA)2 Pb I4 monolayer can approach hundreds of me V,which make it possible to observe the excitonic effect at room temperature.Due to the large exciton binding energy,and hence the high density of excitons,we find that the critical temperature of the exciton condensation could approach the liquid nitrogen regime.In the presence of perpendicular electric fields,the dipole-dipole interaction between excitons is found to drive the condensed excitons confined in(PEA)2 Pb I4 monolayer flakes into patterned vortices,as the evolution time of vortex patterns is comparable to the exciton lifetime.
基金supported by the Natural Science Foundation of Sichuan Province (Grant No.2022NSFSC1415)the Special Project of Sichuan Province Traditional Chinese Medicine Administration (Grant No. 2020JC0124)+1 种基金the Management Project of General Hospital of Western Theater Command (Grants No. 2021-XZYG-C22 and 2021-XZYG-C21)the Spark Young Innovative Talent Project of General Hospital of Western Theater Command。
文摘Lupus nephritis(LN) has a high incidence in systemic lupus erythematosus(SLE) patients, but there is a lack of sensitive predictive markers. The purpose of the study was to investigate the association between the CD4^(+)CD8^(+)double positive T(DPT) lymphocytes and LN. The study included patients with SLE without renal impairment(SLE-NRI), LN, nephritic syndrome(NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed with peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in the LN group were significantly higher than that in the SLE-NRI group(t=4.012, P<0.001), NS group(t=3.240,P=0.001), and nephritis group(t=2.57, P=0.011). In the LN group, the risk of renal impairment increased significantly in a DPT cells proportion-dependent manner. The risk of LN was 5.136 times(95% confidence interval, 2.115–12.473) higher in cases with a high proportion of DPT cells than those whose proportion of DPT cells within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cell proportion.
基金supported by the Regional Leading Research Center Program(2019R1A5A8080326)BRL Program(2020R1A4A1018259)through the National Research Foundation funded by the Ministry of Science and ICT of the Republic of Korea.
文摘A heterostructured electrocatalyst of small NiSe_(2) nanoparticles confined NiMoN nanorods(NiSe_(2)-NPs/NiMoN-NRs)is prepared to accelerate both the hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)in a same alkaline medium.The synergistic effects caused by the combination of merits derived from NiSe_(2) and NiMoN phases trigger an optimum electronic structure with high density of state at near Fermi level and enhance adsorption free energy,thereby resulting in excellent catalytic activities and strengthened working stability.The catalyst requires a low overpotential of 58 mV for HER and 241 mV for OER to reach 10 mA cm^(−2) in 1.0 M KOH electrolyte.A twoelectrode electrolyzer based on the developed catalyst shows outstanding cell voltage of 1.51 and 1.46 V to reach 10 mA cm^(−2) in 1.0 M and 30 wt%KOH solution at 25℃ for overall water splitting,respectively.In addition,the solardriven water splitting process delivers a high solar-to-H_(2) conversion efficiency of∼18.4%,impressively unveiling that the developed bifunctional catalyst is highly potential for overall water splitting to produce green hydrogen fuel.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)the National Natural Science Foundation of China(Grant Nos.61674145,11974340,and 11504106)+1 种基金the National Key R&D Program of China(Grant Nos.2017YFA0303400 and 2018YFA0306101)the Chinese Academy of Sciences(Grant No.QYZDJ-SSW-SYS001 and XDPB22)。
文摘We theoretically study the Casimir interaction between Weyl semimetals.When the distance a between semiinfinite Weyl semimetals is in the micrometer regime,the Casimir attraction can be enhanced by the chiral anomaly.The Casimir attraction depends sensitively on the relative orientations between the separations(b1,b2)of Weyl nodes in the Brillouin zone and show anisotropic behavior for the relative orientation of these separations(b1,b2)when they orient parallel to the interface.This anisotropy is quite larger than that in conventional birefringent materials.The Casimir force can be repulsive in the micrometer regime if the Weyl semimetal slabs are sufficiently thin and the direction of Weyl nodes separations(b1,b2)is perpendicular to the interface.The Casimir attraction between Weyl semimetal slabs decays slower than 1/a4 when the Weyl nodes separations b1 and b2 are both parallel to the interface.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11504366the National Basic Research Program of China under Grant Nos 2015CB921503 and 2016YFE0110000
文摘We propose that the hexagonal crystal form of MoC is a stable and new type of topological semimetal. It hosts an exotic Fermi surface consisting of two concentric nodal rings in the presence of spin-orbit coupling, and possesses four pairs of triply degenerate points (TDPs) in the vicinity of the Fermi energy. The coexistence of the nodal ring Fermi surface and TDPs in MoC leads to extraordinary properties such as distinguishable drumhead surface states and manipulatable new fermions, which make MoC a fertile platform for in-depth understanding of topological phenomena and a potential candidate material for topological electronic devices.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB0460000,XDB28000000,XDPB22)the National Natural Science Foundation of China(Grant Nos.92265203,11974340,and 12174101)Ministry of Science and Technology of the People's Republic of China(Grant No.2018YFA0306-101)。
文摘We investigate theoretically the Casimir interaction between two parallel two-dimensional electron gases(2DEGs)with Rashba and Dresselhaus spin-orbit interactions(SOIs),based on the quantum field theory.We derive an analytical expression for the polarization tensor and obtain the solution to the motion equation of the electromagnetic(EM)field.We calculate the CasimirLifshitz torque(CLT)between two parallel 2DEGs with Rashba and Dresselhaus SOIs,which can be tuned by changing the relative strength between two SOIs.The anisotropic Casimir energy between 2DEGs caused by the interplay between the SOIs of 2DEGs offers a new origin of CLT and a new type of optoelectronic device.
基金supported by the National Key Research and Development Program(Nos.2017YFC1703506,2017YFC1703505,2017YFC1703502,and 2020YFC0841600)the Special Programs of Traditional Chinese Medicine(Nos.JDZX201516&JDZX2015171,and JDZX2015170)the Fundamental Research Funds for the Central public welfare research institutes(Nos.ZZ10-005 and 2018JBZ006).
文摘Coronavirus disease 2019 (COVID-19) is now pandemic worldwide and has heavily overloaded hospitals in Wuhan City, China during the time between late January and February. We reported the clinical features and therapeutic characteristics of moderate COVID-19 cases in Wuhan that were treated via the integration of traditional Chinese medicine (TCM) and Western medicine. We collected electronic medical record (EMR) data, which included the full clinical profiles of patients, from a designated TCM hospital in Wuhan. The structured data of symptoms and drugs from admission notes were obtained through an information extraction process. Other key clinical entities were also confirmed and normalized to obtain information on the diagnosis, clinical treatments, laboratory tests, and outcomes of the patients. A total of 293 COVID-19 inpatient cases, including 207 moderate and 86 (29.3%) severe cases, were included in our research. Among these cases, 238 were discharged, 31 were transferred, and 24 (all severe cases) died in the hospital. Our COVID-19 cases involved elderly patients with advanced ages (57 years on average) and high comorbidity rates (61%). Our results reconfirmed several well-recognized risk factors, such as age, gender (male), and comorbidities, as well as provided novel laboratory indications (e.g., cholesterol) and TCM-specific phenotype markers (e.g., dull tongue) that were relevant to COVID-19 infections and prognosis. In addition to antiviral/antibiotics and standard supportive therapies, TCM herbal prescriptions incorporating 290 distinct herbs were used in 273 (93%) cases. The cases that received TCM treatment had lower death rates than those that did not receive TCM treatment (17/273= 6.2% vs. 7/20= 35%, P = 0.0004 for all cases;17/77= 22% vs. 7/9= 77.7%, P = 0.002 for severe cases). The TCM herbal prescriptions used for the treatment of COVID-19 infections mainly consisted of Pericarpium Citri Reticulatae, Radix Scutellariae, Rhizoma Pinellia, and their combinations, which reflected the practical TCM principles (e.g., clearing heat and dampening phlegm). Lastly, 59% of the patients received treatment, including antiviral, antibiotics, and Chinese patent medicine, before admission. This situation might have some effects on symptoms, such as fever and dry cough. By using EMR data, we described the clinical features and therapeutic characteristics of 293 COVID-19 cases treated via the integration of TCM herbal prescriptions and Western medicine. Clinical manifestations and treatments before admission and in the hospital were investigated. Our results preliminarily showed the potential effectiveness of TCM herbal prescriptions and their regularities in COVID-19 treatment.
基金This work has been partly supported by the National Basic Research Program of China (973 Program) No. 2011CB922204-2, and the National Natural Science Foundation of China (Nos. 11434010, 11147024, 11247025, 11304306, 11374002, and 61290303).
文摘Water-dispersed CdSe/Bi2Se3 core/shell QDs with a photothermal conversion coefficient of 27.09% have been synthesized by a cation exchange reaction. The microstructure and crystal structure of the QDs, which were confirmed by TEM and XRD, showed that partial cation exchange occurred inside the CdSe QDs. Two main mechanisms are responsible for the excellent photothermal conversion: inhibition of radiative recombination of carriers due to the formation of type-II semiconductor heterostructures, and the large surface-to-volume ratio of the QDs. Photothermal conversion experiments indicated that the CdSe/Bi2Se3 QDs showed high photothermal conversion efficiency and excellent NIR photostability.
基金supported by the National Key R&D Program of China (2017YFA0303400 and 2017YFB0405700)the National Natural Science foundation of China (61774144)+2 种基金Beijing Natural Science Foundation Key Program (Z190007)the Project from Chinese Academy of Sciences (QYZDY-SSW-JSC020, XDPB12, and XDB28000000)K C Wong Education Foundation。
文摘Different than covalently bonded magnetic multilayer systems,high-quality interfaces without dangling bonds in van der Waals(vd W)junctions of two-dimensional(2D)layered magnetic materials offer opportunities to realize novel functionalities.Here,we report the fabrication of multi-state vertical spin valves without spacer layers by using vd W homo-junctions in which exfoliated Fe3GeTe2 nanoflakes act as ferromagnetic electrodes and/or interlayers.We demonstrate the typical behavior of two-state and threestate magnetoresistance for devices with two and three Fe3GeTe2 nanoflakes,respectively.Distinct from traditional spin valves with sandwich structures,our novel homo-junction-based spin-valve structure allows the straightforward realization of multi-state magnetic devices.Our work demonstrates the possibility of extend multi-state,non-volatile spin information to 2 D magnetic homo-junctions,and it emphasizes the utility of vd W interface as a fundamental building block for spintronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.81972027,82030066,82122042,81430053).
文摘Circulating tumor DNA(ctDNA)is a critical biomarker not only important for the early detection of tumors but also invaluable for personalized treatments.Currently ctDNA detection relies on sequencing.Here,a platform termed three-dimensional-coded interlocked DNA rings(3D-coded ID rings)was created for multiplexed ctDNA identification.The ID rings provide a ctDNA recognition ring that is physically interlocked with a reporter ring.The specific binding of ctDNA to the recognition ring initiates target-responsive cutting via a restriction endonuclease;the cutting then triggers rolling circle amplification on the reporter ring.The signals are further integrated with internal 3D codes for multiplexed readouts.ctDNAs from non-invasive clinical specimens including plasma,feces,and urine were detected and validated at a sensitivity much higher than those obtained through sequencing.This 3D-coded ID ring platform can detect any multiple DNA fragments simultaneously without sequencing.We envision that our platform will facilitate the implementation of future personalized/precision medicine.
基金supported by the National Natural Science Foundation of China(Grant Nos.11804092,11774085,61674145,and 69876039)the Project Funded by China Postdoctoral Science Foundation(Grant Nos.BX20180097,and 2019M652777)the Hunan Provincial Natural Science Foundation of China(Grant No.2019JJ40187)。
文摘We analytically study the electronic structure and optical properties of zigzag-edged phosphorene nanoribbons(ZPNRs) using the tight-binding Hamiltonian and Kubo formula. By directly solving the discrete Schrodinger equation, we obtain the energy spectra and wavefunctions for N-ZPNR(where N is the number of transverse zigzag atomic chains) and classify the eigenstates according to the lattice symmetry. Then, we obtain the optical transition selection rule of ZPNRs on the basis of symmetry analysis and analytical expressions of optical transition matrix elements. Under incident light that is linearly polarized along the ribbon, we determine that the optical transition selection rule for N-ZPNR with even-or odd-N is qualitatively different. Specifically, for even-N ZPNRs, the inter-(intra-) band selection rule is ?n =odd(even) because the parity of the wavefunction corresponding to the n-th subband in the conduction(valence) band is(-1)~n[(-1)~((n+1))] owing to the presence of C(2x) symmetry. However, the optical transitions between any subbands are possible owing to the absence of C(2x) symmetry. Our results provide a further understanding on the electronic states and optical properties of ZPNRs, which are useful for explaining the optical experiment data on ZPNR samples.
基金financially supported by the Natural Science Foundation of Beijing(No.M21012)National Natural Science Foundation of China(No.82174533)Key Technologies R and D Program of the China Academy of Chinese Medical Sciences(No.CI2021A00920).
文摘Objective:To validate two proposed coronavirus disease 2019(COVID-19)prognosis models,analyze the characteristics of different models,consider the performance of models in predicting different outcomes,and provide new insights into the development and use of artificial intelligence(AI)predictive models in clinical decision-making for COVID-19 and other diseases.Materials and Methods:We compared two proposed prediction models for COVID-19 prognosis that use a decision tree and logistic regression modeling.We evaluated the effectiveness of different model-building strategies using laboratory tests and/or clinical record data,their sensitivity and robustness to the timings of records used and the presence of missing data,and their predictive performance and capabilities in single-site and multicenter settings.Results:The predictive accuracies of the two models after retraining were improved to 93.2% and 93.9%,compared with that of the models directly used,with accuracies of 84.3% and 87.9%,indicating that the prediction models could not be used directly and require retraining based on actual data.In addition,based on the prediction model,new features obtained by model comparison and literature evidence were transferred to integrate the new models with better performance.Conclusions:Comparing the characteristics and differences of datasets used in model training,effective model verification,and a fusion of models is necessary in improving the performance of AI models.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)the National Natural Science Foundation of China(Grant Nos.61674145,11974340,11434010,11574303,and 11774021)+2 种基金the Ministry of Science and Technology of the People’s Republic of China(Grant Nos.2018YFA0306101,and 2017YFA0303400)the Chinese Academy of Sciences(Grant No.QYZDJSSW-SYS001,and XXH13506-202)the NSFC program for the“Scientific Research Center”(Grant No.U1930402)。
文摘The energy level separation between the edge states in topological insulator quantum dots lies in the terahertz(THz) range.Quantum confinement ensures the nonuniformity of the energy level separation near the Dirac point. Based on these features, we propose that a topological insulator quantum dot array can be operated as an electrically pumped continuous-wave THz laser. The proposed device can operate at room temperature, with power exceeding 10 mW and quantum efficiency reaching ~50%. This study may promote the usage of topological insulator quantum dots as an important source of THz radiation.