It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclode...It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater.展开更多
Cotton is an important natural fiber crop worldwide which plays a vital role in our daily life.High yield is a constant goal of cotton breeding,and lint percentage(LP)is one of the important components of cotton fiber...Cotton is an important natural fiber crop worldwide which plays a vital role in our daily life.High yield is a constant goal of cotton breeding,and lint percentage(LP)is one of the important components of cotton fiber yield.A stable QTL controlling LP,qLP_(A01.1),was identified on chromosome A01 from Gossypium hirsutum introgressed lines with G.tomentosum chromosome segments in a previous study.To fine-map qLP_(A01.1),an F2 population with 986individuals was established by crossing G.hirsutum cultivar CCRI35 with the chromosome segment substitution line HT_390.A high-resolution genetic map including 47 loci and spanning 56.98 cM was constructed in the QTL region,and qLP_(A01.1)was ultimately mapped into an interval corresponding to an~80 kb genome region of chromosome A01in the reference genome,which contained six annotated genes.Transcriptome data and sequence analysis revealed that S-acyltransferase protein 24(GoPAT24)might be the target gene of qLP_(A01.1).This result provides the basis for cotton fiber yield improvement via marker-assisted selection(MAS)and further studies on the mechanism of cotton fiber development.展开更多
The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular mom...The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.展开更多
Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimiz...Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions lead-ing to a significant reduction of the electronic repulsions in the orbitals of catalysts.Herein,we anchor the MgPc molecules on fluorinated carbon nanotubes(MgPc@FCNT),which exhibits the single active Mg sites with axial displacement.According to the density functional theory calculations,the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batter-ies.As a result,the MgPc@FCNT provides an initial capacity of 6.1 mAh cm^(-2) even when the high sulfur loading is 4.5 mg cm^(-2),and still maintains 5.1 mAh cm^(-2) after 100 cycles.This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.展开更多
Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological proce...Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.展开更多
This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to ach...This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.展开更多
The Editor-in-Chief has retracted this article on the corresponding authors'request.The corresponding authors on behalf of all the authors stated that the data presented in this article does not belong to the name...The Editor-in-Chief has retracted this article on the corresponding authors'request.The corresponding authors on behalf of all the authors stated that the data presented in this article does not belong to the named authors,but belongs to Prof.Sheng-xi Wu and Prof.Wang Xi of the Department of Neurobiology of the Fourth Military Medical University,Xi'an,China.展开更多
Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity ...Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity and superior lifespan.Herein,hexagonal Cs_(0.3)V_(2)O_(5)cathode is fabricated and investigated in zinc-ion batteries.Compared with the traditional vanadium oxides,the introduction of Cs changes the periodic atomic arrangements,which not only stabilizes the open framework structure but also facilitates the Zn^(2+)diffusion with a lower migration energy barrier.Consequently,high specific capacity of 543.8 mA h g^(-1)at 0.1 A g^(-1)is achieved,which surpasses most of reported cathode materials in zinc-ion batteries.The excellent cycle life is achieved over 1000 cycles with about 87.8%capacity retention at 2 A g^(-1).Furthermore,the morphological evolution and energy storage mechanisms are also revealed via a series of techniques.This work opens up a phase engineering strategy to fabricate the hexagonal vanadium oxide and elucidate the application of phase-dependent cathodes in zinc-ion batteries.展开更多
Background:Melatonin,a natural hormone secreted by the pineal gland,has been reported to exhibit antitumor properties through diverse mechanisms of action.However,the oncostatic function of melatonin on esophageal squ...Background:Melatonin,a natural hormone secreted by the pineal gland,has been reported to exhibit antitumor properties through diverse mechanisms of action.However,the oncostatic function of melatonin on esophageal squamous cell carcinoma(ESCC) remains elusive.This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells.Methods:ESCC cell lines treated with or without melatonin were used in this study.In vitro colony formation and 5-Ethynyl-2’-deoxyuridine(EdU) incorporation assays,and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells.RNA-seq,qPCR,Western blotting,recombinant lentivirus-mediated target gene overexpression or knockdown,plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth.IHC staining on ESCC tissue microarray and further survival analyses were performed to explore the relationship between target genes’ expression and prognosis of ESCC.Results:Melatonin treatment dose-dependently inhibited the proliferative ability and the expression of histone deacetylase 7(HDAC7),c-Myc and ubiquitin-specific peptidase 10(USP10) in ESCC cells(P<0.05).The expressions of HDAC7,c-Myc and USP10 in tumors were significantly higher than the paired normal tissues from 148 ESCC patients(P<0.001).Then,the Kaplan-Meier survival analysis suggested that ESCC patients with high HDAC7,c-Myc or USP10levels predicted worse overall survival(log-rank P<0.001).Co-IP and Western blotting further revealed that HDAC7physically deacetylated and activated β-catenin thus promoting downstream target c-Myc gene transcription.Notably,our mechanistic study validated that HDAC7/β-catenin/c-Myc could form the positive feedback loop to enhance ESCC cell growth,and USP10 could deubiquitinate and stabilize HDAC7 protein in the ESCC cells.Additionally,we verified that inhibition of the HDAC7/β-catenin/c-Myc axis and USP10/HDAC7 pathway mediated the anti-proliferative action of melatonin on ESCC cells.Conclusions:Our findings elucidate that melatonin mitigates the HDAC7/β-catenin/c-Myc positive feedback loop and inhibits the USP10-maintained HDAC7 protein stability thus suppressing ESCC cell growth,and provides the reference for identifying biomarkers and therapeutic targets for ESCC.展开更多
Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing...Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process.展开更多
A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have...A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.展开更多
Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,...Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,medical diagnosis,and defense applications.Metalorganic chemical vapor deposition(MOCVD)is an important technology for growing high quality semiconductor materials,and has achieved great success in the semiconductor industry due to its advantages of high efficiency,short maintenance cycles,and high stability and repeatability.The utilization of MOCVD for the growth of QCL materials holds a significant meaning for promoting the large batch production and industrial application of QCL devices.This review summarizes the recent progress of QCLs grown by MOCVD.Material quality and the structure design together determine the device performance.Research progress on the performance improvement of MOCVD-grown QCLs based on the optimization of material quality and active region structure are mainly reviewed.展开更多
Objective:This study aims to investigate the effects of hydralazine on inflammation induced by spinal cord injury(SCI)in the central nervous system(CNS)and its mechanism in promoting the structural and functional reco...Objective:This study aims to investigate the effects of hydralazine on inflammation induced by spinal cord injury(SCI)in the central nervous system(CNS)and its mechanism in promoting the structural and functional recovery of the injured CNS.Methods:A compressive SCI mouse model was utilized for this investigation.Immunofluorescence and quantitative real-time polymerase chain reaction were employed to examine the levels of acrolein,acrolein-induced inflammation-related factors,and macrophages at the injury site and within the CNS.Western blotting was used to evaluate the activity of the phosphoinositide 3-kinase(PI3K)/AKT pathway to study macrophage regulation.The neuropathic pain and motor function recovery were evaluated by glutamic acid decarboxylase 65/67(GAD65/67),vesicular glutamate transporter 1(VGLUT1),paw withdrawal response,and Basso Mouse Scale score.Nissl staining and Luxol Fast Blue(LFB)staining were performed to investigate the structural recovery of the injured CNS.Results:Hydralazine downregulated the levels of acrolein,IL-1β,and TNF-αin the spinal cord.The downregulation of acrolein induced by hydralazine promoted the activation of the PI3K/AKT pathway,leading to M2 macrophage polarization,which protected neurons against SCI-induced inflammation.Additionally,hydralazine promoted the structural recovery of the injured spinal cord area.Mitigating inflammation and oxidative stress by hydralazine in the animal model alleviated neuropathic pain and altered neurotransmitter expression.Furthermore,hydralazine facilitated motor function recovery following SCI.Nissl staining and LFB staining indicated that hydralazine promoted the structural recovery of the injured CNS.Conclusion:Hydralazine,an acrolein scavenger,significantly mitigated SCI-induced inflammation and oxidative stress in vivo,modulated macrophage activation,and consequently promoted the structural and functional recovery of the injured CNS.展开更多
Correction to:J.For.Res.(2022)33:689–698 https://doi.org/10.1007/s11676-021-01335-7 In the Original Publication,the text“Acknowledgements sdfkjds”has been inadvertently appeared in the paper.The Original article ha...Correction to:J.For.Res.(2022)33:689–698 https://doi.org/10.1007/s11676-021-01335-7 In the Original Publication,the text“Acknowledgements sdfkjds”has been inadvertently appeared in the paper.The Original article has been corrected.展开更多
BACKGROUND Intrapancreatic accessory spleen(IPAS)shares similar imaging findings with hypervascular pancreatic neuroendocrine tumors(PNETs),which may lead to unnecessary surgery.AIM To investigate and compare the diag...BACKGROUND Intrapancreatic accessory spleen(IPAS)shares similar imaging findings with hypervascular pancreatic neuroendocrine tumors(PNETs),which may lead to unnecessary surgery.AIM To investigate and compare the diagnostic performance of absolute apparent diffusion coefficient(ADC)and normalized ADC(lesion-to-spleen ADC ratios)in the differential diagnosis of IPAS from PNETs.METHODS A retrospective study consisting of 29 patients(16 PNET patients vs 13 IPAS patients)who underwent preoperative contrast-enhanced magnetic resonance imaging together with diffusion-weighted imaging/ADC maps between January 2017 and July 2020 was performed.Two independent reviewers measured ADC on all lesions and spleens,and normalized ADC was calculated for further analysis.The receiver operating characteristics analysis was carried out for evaluating the diagnostic performance of both absolute ADC and normalized ADC values in the differential diagnosis between IPAS and PNETs by clarifying sensitivity,specificity,and accuracy.Inter-reader reliability for the two methods was evaluated.RESULTS IPAS had a significantly lower absolute ADC(0.931±0.773×10^(-3)mm^(2)/s vs 1.254±0.219×10^(-3)mm^(2)/s)and normalized ADC value(1.154±0.167 vs 1.591±0.364)compared to PNET.A cutoff value of 1.046×10^(-3)mm^(2)/s for absolute ADC was associated with 81.25%sensitivity,100%specificity,and 89.66%accuracy with an area under the curve of 0.94(95%confidence interval:0.8536-1.000)for the differential diagnosis of IPAS from PNET.Similarly,a cutoff value of 1.342 for normalized ADC was associated with 81.25%sensitivity,92.31%specificity,and 86.21%accuracy with an area under the curve of 0.91(95%confidence interval:0.8080-1.000)for the differential diagnosis of IPAS from PNET.Both methods showed excellent inter-reader reliability with intraclass correlation coefficients for absolute ADC and ADC ratio being 0.968 and 0.976,respectively.CONCLUSION Both absolute ADC and normalized ADC values can facilitate the differentiation between IPAS and PNET.展开更多
In recent years, deep networks has achieved outstanding performance in computer vision, especially in the field of face recognition. In terms of the performance for a face recognition model based on deep network, ther...In recent years, deep networks has achieved outstanding performance in computer vision, especially in the field of face recognition. In terms of the performance for a face recognition model based on deep network, there are two main closely related factors: 1) the structure of the deep neural network, and 2) the number and quality of training data. In real applications, illumination change is one of the most important factors that significantly affect the performance of face recognition algorithms. As for deep network models, only if there is sufficient training data that has various illumination intensity could they achieve expected performance. However, such kind of training data is hard to collect in the real world. In this paper, focusing on the illumination change challenge, we propose a deep network model which takes both visible light image and near-infrared image into account to perform face recognition. Near- infrared image, as we know, is much less sensitive to illuminations. Visible light face image contains abundant texture information which is very useful for face recognition. Thus, we design an adaptive score fusion strategy which hardly has information loss and the nearest neighbor algorithm to conduct the final classification. The experimental results demonstrate that the model is very effective in realworld scenarios and perform much better in terms of illumination change than other state-of-the-art models.展开更多
Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construc...Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construct a simple and environmentally friendly system to achieve simultaneous H2 and H2O2 production. Both H2 and H2O2 are high-value chemicals, and their separation is automatic. Even without the assistance of a sacrificial agent, the system can reach an efficiency of 7410 and 5096 μmol g^-1 h^–1 (first 1 h) for H2 and H2O2, respectively, which is much higher than that of a commercial Pt/TiO2(anatase) system that has a similar morphology. This exceptional activity is attributed to the more favorable two-electron oxidation of water to H2O2, compared with the four-electron oxidation of water to O2.展开更多
基金National Natural Science Foundation of China(21603064,52102214)Natural Science Foundation of Jiangxi Province(20202BABL203026,20212BAB203001,20202BABL214016)College Student Innovation and Enterprise Programme of Jiangxi Province(S202310405010)provided funding for this study.
文摘It is quite important to ensure the safety and sustainable development of nuclear energy for the treatment of radioactive wastewater. To treat radioactive wastewater efficiently and rapidly, two multi-amine β-cyclodextrin polymers(diethylenetriamine β-cyclodextrin polymer(DETA-TFCDP) and triethylenetetramine β-cyclodextrin polymer(TETA-TFCDP)) were prepared and applied to capture uranium. Results exhibited that DETA-TFCDP and TETA-TFCDP displayed the advantages of high adsorption amounts(612.2and 628.2 mg·g-1, respectively) and rapid adsorption rates, which can reach(88 ± 1)% of their equilibrium adsorption amounts in 10 min. Moreover, the adsorbent processes of DETA-TFCDP and TETATFCDP on uranium(Ⅵ) followed the Langmuir model and pseudo-second-order model, stating they were mainly chemisorption and self-endothermic. Besides, TETA-TFCDP also showed excellent selectivity in the presence of seven competing cations and could be effectively reused five times via Na2CO3as the desorption reagent. Meanwhile, X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy illustrated that the enriched multi-amine groups and oxygen-containing functional groups on the surface of TETA-TFCDP were the main active sites for capturing uranium(Ⅵ). Hence, multi-amine β-cyclodextrin polymers are a highly efficient, rapid, and promising adsorbent for capturing uranium(Ⅵ)from radioactive wastewater.
基金supported by the National Natural Science Foundation of China(32172064 and 32201827)。
文摘Cotton is an important natural fiber crop worldwide which plays a vital role in our daily life.High yield is a constant goal of cotton breeding,and lint percentage(LP)is one of the important components of cotton fiber yield.A stable QTL controlling LP,qLP_(A01.1),was identified on chromosome A01 from Gossypium hirsutum introgressed lines with G.tomentosum chromosome segments in a previous study.To fine-map qLP_(A01.1),an F2 population with 986individuals was established by crossing G.hirsutum cultivar CCRI35 with the chromosome segment substitution line HT_390.A high-resolution genetic map including 47 loci and spanning 56.98 cM was constructed in the QTL region,and qLP_(A01.1)was ultimately mapped into an interval corresponding to an~80 kb genome region of chromosome A01in the reference genome,which contained six annotated genes.Transcriptome data and sequence analysis revealed that S-acyltransferase protein 24(GoPAT24)might be the target gene of qLP_(A01.1).This result provides the basis for cotton fiber yield improvement via marker-assisted selection(MAS)and further studies on the mechanism of cotton fiber development.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11804073 and 61775050).
文摘The influence of the longitudinal acceleration and the angular acceleration of detecting target based on vortex electromagnetic waves in keyhole space are analyzed.The spectrum spreads of different orbital angular momentum(OAM)modes in different non-line-of-sight situations are simulated.The errors of target accelerations in detection are calculated and compared based on the OAM spectra spreading by using two combinations of composite OAM modes in the keyhole space.According to the research,the effects about spectrum spreads of higher OAM modes are more obvious.The error in detection is mainly affected by OAM spectrum spreading,which can be reduced by reasonably using different combinations of OAM modes in different practical situations.The above results provide a reference idea for investigating keyhole effect when vortex electromagnetic wave is used to detect accelerations.
基金This work was financially supported by the National Natural Science Foundation of China(No.22109140,U22A20107)Henan Provincial Science and Technology R&D Program Joint Fund(222301420001)+4 种基金Distinguished Young Scholars Innovation Team of Zhengzhou University(No.32320275)Higher Education Teaching Reform Research and Practice Project of Henan Province(2021SJGLX093Y)China Postdoctoral Science Foundation(2022M722866)International Talent Cooperation Program in Henan Province(No.HNGD2022036)the Postdoctoral Science Foundation of Zhengzhou University(22120030).
文摘Spin-engineering with electrocatalysts have been exploited to suppress the“shuttle effect”in Li–S batteries.Spin selec-tion,spin-dependent electron mobility and spin potentials in activation barriers can be optimized as quantum spin exchange interactions lead-ing to a significant reduction of the electronic repulsions in the orbitals of catalysts.Herein,we anchor the MgPc molecules on fluorinated carbon nanotubes(MgPc@FCNT),which exhibits the single active Mg sites with axial displacement.According to the density functional theory calculations,the electronic spin polarization in MgPc@FCNT not only increases the adsorption energy toward LiPSs intermediates but also facilitates the tunneling process of electron in Li–S batter-ies.As a result,the MgPc@FCNT provides an initial capacity of 6.1 mAh cm^(-2) even when the high sulfur loading is 4.5 mg cm^(-2),and still maintains 5.1 mAh cm^(-2) after 100 cycles.This work provides a new perspective to extend the main group single-atom catalysts enabling high-performance Li–S batteries.
基金support by National Key Research and Development Program of China(Grant No.:2023YFA0913604)Program of National Natural Science Foundation of China(Grant No.:22178170,22378195)+2 种基金Six talent peaks project in Jiangsu Province(SWYY-045)Program of National Natural Science Foundation of China(Grant No.22208155)Jiangsu Province Natural Science Foundation for Young Scholars(Grant No.BK20210552).
文摘Considerable progress has been made in recent years to the development of sustainable polymers from bio-based feedstocks.In this study,100%bio-based nylons were prepared via an integrated chemical and biological process from lignocellulose.These novel nylons were obtained by the melt polymerization of 3-propyladipic acid derived from lignin and 1,5-pentenediamine/1,4-butanediamine derived from carbohydrate sugar.Central to the concept is a three-step noble metal free catalytic chemical funnelling sequence(Raney Ni mediated reductive catalytic fractionation-reductive funnelling-oxidative funnelling),which allowed for obtaining a single component 3-propyladipic acid from lignin with high efficiency.The structural and thermodynamic properties of the obtained nylons have been systematically investigated,and thus obtained transparent bio-based nylons exhibited higher Mw(>32,000)and excellent thermal stability(Td5%>265℃).Considering their moderate Tg and good melt strength,these transparent bio-based nylons could serve as promising functional additives or temperature-responsive materials.
基金supported by the Major Science and TechnologyTechnol-ogy Projects in Gansu Province(No.22ZD6FA021-5)Industrial Support Project of Gansu Province(Nos.2023CYZC-19 and 2021CYZC-22)+1 种基金Science and Technol-ogy Project of Gansu Province(Nos.23YFFA0074,22JR5RA137,and 22JR5RA151)Central Leading Local Science and Technology Development Fund Projects(No.23ZYQA293).
文摘This study proposes a batch rapid quantitative analysis method for multiple elements by combining the advantages of standard curve(SC)and calibration-free laser-induced breakdown spectroscopy(CF-LIBS)technology to achieve synchronous,rapid,and accurate measurement of elements in a large number of samples,namely,SC-assisted CF-LIBS.Al alloy standard samples,divided into calibration and test samples,were applied to validate the proposed method.SC was built based on the characteristic line of Pb and Cr in the calibration sample,and the contents of Pb and Cr in the test sample were calculated with relative errors of 6%and 4%,respectively.SC built using Cr with multiple characteristic lines yielded better calculation results.The relative contents of ten elements in the test sample were calculated using CF-LIBS.Subsequently,the SC-assisted CF-LIBS was executed,with the majority of the calculation relative errors falling within the range of 2%-5%.Finally,the Al and Na contents of the Al alloy were predicted.The results demonstrate that it effectively enables the rapid and accurate quantitative analysis of multiple elements after a single-element SC analysis of the tested samples.Furthermore,this quantitative analysis method was successfully applied to soil and Astragalus samples,realizing an accurate calculation of the contents of multiple elements.Thus,it is important to advance the LIBS quantitative analysis and its related applications.
文摘The Editor-in-Chief has retracted this article on the corresponding authors'request.The corresponding authors on behalf of all the authors stated that the data presented in this article does not belong to the named authors,but belongs to Prof.Sheng-xi Wu and Prof.Wang Xi of the Department of Neurobiology of the Fourth Military Medical University,Xi'an,China.
基金financialy supported by the National Natural Science Foundation of China(Nos.22109140,21875221,and 22075223)Distinguished Young Scholars Innovation Team of Zhengzhou University(No.32320275)the Youth Talent Support Program of High-Level Talents Special Support Plan in Henan Province(ZYQR201810148)
文摘Rechargeable aqueous zinc-ion batteries are promising candidate for gridscale energy storage.However,the development of zinc-ion batteries has been plagued by the lack of cathode materials with high specific capacity and superior lifespan.Herein,hexagonal Cs_(0.3)V_(2)O_(5)cathode is fabricated and investigated in zinc-ion batteries.Compared with the traditional vanadium oxides,the introduction of Cs changes the periodic atomic arrangements,which not only stabilizes the open framework structure but also facilitates the Zn^(2+)diffusion with a lower migration energy barrier.Consequently,high specific capacity of 543.8 mA h g^(-1)at 0.1 A g^(-1)is achieved,which surpasses most of reported cathode materials in zinc-ion batteries.The excellent cycle life is achieved over 1000 cycles with about 87.8%capacity retention at 2 A g^(-1).Furthermore,the morphological evolution and energy storage mechanisms are also revealed via a series of techniques.This work opens up a phase engineering strategy to fabricate the hexagonal vanadium oxide and elucidate the application of phase-dependent cathodes in zinc-ion batteries.
基金supported by the National Natural Science Foundation of China (82103508, 81871866, 82173252, 81672996)the Natural Science Foundation of Shaanxi Province (2022JQ?862)。
文摘Background:Melatonin,a natural hormone secreted by the pineal gland,has been reported to exhibit antitumor properties through diverse mechanisms of action.However,the oncostatic function of melatonin on esophageal squamous cell carcinoma(ESCC) remains elusive.This study was conducted to investigate the potential effect and underlying molecular mechanism of melatonin as single anticancer agent against ESCC cells.Methods:ESCC cell lines treated with or without melatonin were used in this study.In vitro colony formation and 5-Ethynyl-2’-deoxyuridine(EdU) incorporation assays,and nude mice tumor xenograft model were used to confirm the proliferative capacities of ESCC cells.RNA-seq,qPCR,Western blotting,recombinant lentivirus-mediated target gene overexpression or knockdown,plasmids transfection and co-IP were applied to investigate the underlying molecular mechanism by which melatonin inhibited ESCC cell growth.IHC staining on ESCC tissue microarray and further survival analyses were performed to explore the relationship between target genes’ expression and prognosis of ESCC.Results:Melatonin treatment dose-dependently inhibited the proliferative ability and the expression of histone deacetylase 7(HDAC7),c-Myc and ubiquitin-specific peptidase 10(USP10) in ESCC cells(P<0.05).The expressions of HDAC7,c-Myc and USP10 in tumors were significantly higher than the paired normal tissues from 148 ESCC patients(P<0.001).Then,the Kaplan-Meier survival analysis suggested that ESCC patients with high HDAC7,c-Myc or USP10levels predicted worse overall survival(log-rank P<0.001).Co-IP and Western blotting further revealed that HDAC7physically deacetylated and activated β-catenin thus promoting downstream target c-Myc gene transcription.Notably,our mechanistic study validated that HDAC7/β-catenin/c-Myc could form the positive feedback loop to enhance ESCC cell growth,and USP10 could deubiquitinate and stabilize HDAC7 protein in the ESCC cells.Additionally,we verified that inhibition of the HDAC7/β-catenin/c-Myc axis and USP10/HDAC7 pathway mediated the anti-proliferative action of melatonin on ESCC cells.Conclusions:Our findings elucidate that melatonin mitigates the HDAC7/β-catenin/c-Myc positive feedback loop and inhibits the USP10-maintained HDAC7 protein stability thus suppressing ESCC cell growth,and provides the reference for identifying biomarkers and therapeutic targets for ESCC.
基金supported by the National Key Research and Development Program of China (2021YFC2101900 and 2019YFA0905000)National Natural Science Foundation of China (21908094, 21776130 and 22078150)+1 种基金Nanjing International Joint Research and Development Project (202002037)Top-notch Academic Programs Project of Jiangsu Higher Education Institutions。
文摘Due to the scale effect, the uniform distribution of reagents in continuous flow reactor becomes bad when the channel is enlarged to tens of millimeters. Microfluidic field strategy was proposed to produce high mixing efficiency in large-scale channel. A 3D spiral baffle structure(3SBS) was designed and optimized to form microfluidic field disturbed by continuous secondary flow in millimeter scale Y-shaped tube mixer(YSTM). Enhancement effect of the 3SBS in liquid-liquid homogeneous chemical processes was verified and evaluated through the combination of simulation and experiment. Compared with 1 mm YSTM, 10 mm YSTM with 3SBS increased the treatment capacity by 100 times, shortened the basic complete mixing time by 0.85 times, which proves the potential of microfluidic field strategy in enhancement and scale-up of liquid-liquid homogeneous chemical process.
文摘A dedicated GPS buoy is designed for calibration and validation(Cal/Val)of satellite altimeters since 2014.In order to evaluate the accuracy of the sea surface height(SSH)measured by the GPS buoy,twelve campaigns have been done within China sea area between 2014 and 2021.In six of these campaigns,two static Global Navigation Satellite System stations were installed at distances of<1 km and 19 km from the buoy to assess how the baseline length influenced the derived SSH from the buoy solutions.The GPS buoy data was processed using the GAMIT/GLOBK software+TRACK module and CSRS-PPP tool to achieve the SSH.The SSH was compared with conventionally tide gauge(TG)data to evaluate the accuracy of the buoy with the standard deviation of the height element.The results showed that the difference in the standard deviation of the SSH from the buoy and the TG was less than 16 mm.The SSHs processed with different ephemeris(Ultra-Rapid,Rapid,Final)were not significantly different.When the baseline length was 19 km,the SSH solution of the GPS buoy performed well,with standard bias of less than 26 mm between the heights measured by the buoy and TG,meaning that the buoy could be used for Cal/Val of altimeters.The bias between the Canadian Spatial Reference System-precise point positioning tool and the TRACK varied a lot,and some of them were over 130 mm.This deemed too high to be useful for Cal/Val of satellite altimeters.Moreover,the GPS buoy solutions processed by GAMIT/GLOBK software+TRACK module were used for in-orbit Cal/Val of HY-2B/C satellites in ten campaigns.The SSH and significant wave height of the altimeters showed good agreements with the GPS buoy solutions.
基金supported by National Key Research and Development Program of China (Grant No.2021YFB3201900)National Natural Science Foundation of China (Grant Nos.61991430,62235016)+1 种基金Youth Innovation Promotion Association of CAS (Grant Nos.2022112,Y2022046)Key projects of the Chinese Academy of Sciences (Grant No.XDB43000000)。
文摘Sharing the advantages of high optical power,high efficiency and design flexibility in a compact size,quantum cascade lasers(QCLs)are excellent mid-to-far infrared laser sources for gas sensing,infrared spectroscopic,medical diagnosis,and defense applications.Metalorganic chemical vapor deposition(MOCVD)is an important technology for growing high quality semiconductor materials,and has achieved great success in the semiconductor industry due to its advantages of high efficiency,short maintenance cycles,and high stability and repeatability.The utilization of MOCVD for the growth of QCL materials holds a significant meaning for promoting the large batch production and industrial application of QCL devices.This review summarizes the recent progress of QCLs grown by MOCVD.Material quality and the structure design together determine the device performance.Research progress on the performance improvement of MOCVD-grown QCLs based on the optimization of material quality and active region structure are mainly reviewed.
基金supported by the National Natural Science Foundation of China Young Scientists Fund(No.81801216,No.81802143,No.81901966)the China Postdoctoral Foundation(No.2018M633748).
文摘Objective:This study aims to investigate the effects of hydralazine on inflammation induced by spinal cord injury(SCI)in the central nervous system(CNS)and its mechanism in promoting the structural and functional recovery of the injured CNS.Methods:A compressive SCI mouse model was utilized for this investigation.Immunofluorescence and quantitative real-time polymerase chain reaction were employed to examine the levels of acrolein,acrolein-induced inflammation-related factors,and macrophages at the injury site and within the CNS.Western blotting was used to evaluate the activity of the phosphoinositide 3-kinase(PI3K)/AKT pathway to study macrophage regulation.The neuropathic pain and motor function recovery were evaluated by glutamic acid decarboxylase 65/67(GAD65/67),vesicular glutamate transporter 1(VGLUT1),paw withdrawal response,and Basso Mouse Scale score.Nissl staining and Luxol Fast Blue(LFB)staining were performed to investigate the structural recovery of the injured CNS.Results:Hydralazine downregulated the levels of acrolein,IL-1β,and TNF-αin the spinal cord.The downregulation of acrolein induced by hydralazine promoted the activation of the PI3K/AKT pathway,leading to M2 macrophage polarization,which protected neurons against SCI-induced inflammation.Additionally,hydralazine promoted the structural recovery of the injured spinal cord area.Mitigating inflammation and oxidative stress by hydralazine in the animal model alleviated neuropathic pain and altered neurotransmitter expression.Furthermore,hydralazine facilitated motor function recovery following SCI.Nissl staining and LFB staining indicated that hydralazine promoted the structural recovery of the injured CNS.Conclusion:Hydralazine,an acrolein scavenger,significantly mitigated SCI-induced inflammation and oxidative stress in vivo,modulated macrophage activation,and consequently promoted the structural and functional recovery of the injured CNS.
文摘Correction to:J.For.Res.(2022)33:689–698 https://doi.org/10.1007/s11676-021-01335-7 In the Original Publication,the text“Acknowledgements sdfkjds”has been inadvertently appeared in the paper.The Original article has been corrected.
基金Supported by the National Natural Science foundation of China,No. 82202135, and No. 82171925Foundation of Excellent Young Doctor of Jiangsu Province Hospital of Chinese Medicine,No. 2023QB0112+1 种基金Innovative Development Foundation of Department in Jiangsu Hospital of Chinese Medicine,No. Y2021CX19Developing Program for High-level Academic Talent in Jiangsu Hospital of TCM,No. y2021rc03
文摘BACKGROUND Intrapancreatic accessory spleen(IPAS)shares similar imaging findings with hypervascular pancreatic neuroendocrine tumors(PNETs),which may lead to unnecessary surgery.AIM To investigate and compare the diagnostic performance of absolute apparent diffusion coefficient(ADC)and normalized ADC(lesion-to-spleen ADC ratios)in the differential diagnosis of IPAS from PNETs.METHODS A retrospective study consisting of 29 patients(16 PNET patients vs 13 IPAS patients)who underwent preoperative contrast-enhanced magnetic resonance imaging together with diffusion-weighted imaging/ADC maps between January 2017 and July 2020 was performed.Two independent reviewers measured ADC on all lesions and spleens,and normalized ADC was calculated for further analysis.The receiver operating characteristics analysis was carried out for evaluating the diagnostic performance of both absolute ADC and normalized ADC values in the differential diagnosis between IPAS and PNETs by clarifying sensitivity,specificity,and accuracy.Inter-reader reliability for the two methods was evaluated.RESULTS IPAS had a significantly lower absolute ADC(0.931±0.773×10^(-3)mm^(2)/s vs 1.254±0.219×10^(-3)mm^(2)/s)and normalized ADC value(1.154±0.167 vs 1.591±0.364)compared to PNET.A cutoff value of 1.046×10^(-3)mm^(2)/s for absolute ADC was associated with 81.25%sensitivity,100%specificity,and 89.66%accuracy with an area under the curve of 0.94(95%confidence interval:0.8536-1.000)for the differential diagnosis of IPAS from PNET.Similarly,a cutoff value of 1.342 for normalized ADC was associated with 81.25%sensitivity,92.31%specificity,and 86.21%accuracy with an area under the curve of 0.91(95%confidence interval:0.8080-1.000)for the differential diagnosis of IPAS from PNET.Both methods showed excellent inter-reader reliability with intraclass correlation coefficients for absolute ADC and ADC ratio being 0.968 and 0.976,respectively.CONCLUSION Both absolute ADC and normalized ADC values can facilitate the differentiation between IPAS and PNET.
文摘In recent years, deep networks has achieved outstanding performance in computer vision, especially in the field of face recognition. In terms of the performance for a face recognition model based on deep network, there are two main closely related factors: 1) the structure of the deep neural network, and 2) the number and quality of training data. In real applications, illumination change is one of the most important factors that significantly affect the performance of face recognition algorithms. As for deep network models, only if there is sufficient training data that has various illumination intensity could they achieve expected performance. However, such kind of training data is hard to collect in the real world. In this paper, focusing on the illumination change challenge, we propose a deep network model which takes both visible light image and near-infrared image into account to perform face recognition. Near- infrared image, as we know, is much less sensitive to illuminations. Visible light face image contains abundant texture information which is very useful for face recognition. Thus, we design an adaptive score fusion strategy which hardly has information loss and the nearest neighbor algorithm to conduct the final classification. The experimental results demonstrate that the model is very effective in realworld scenarios and perform much better in terms of illumination change than other state-of-the-art models.
基金supported by the National Natural Science Foundation of China(21703046)the National Key R&D of China(2016YFF0203803 and 2016YFA0200902)~~
文摘Photocatalytic oxidation of water is a promising method to realize large-scale H2O2 production without a hazardous and energy-intensive process. In this study, we introduce a Pt/TiO2(anatase) photocatalyst to construct a simple and environmentally friendly system to achieve simultaneous H2 and H2O2 production. Both H2 and H2O2 are high-value chemicals, and their separation is automatic. Even without the assistance of a sacrificial agent, the system can reach an efficiency of 7410 and 5096 μmol g^-1 h^–1 (first 1 h) for H2 and H2O2, respectively, which is much higher than that of a commercial Pt/TiO2(anatase) system that has a similar morphology. This exceptional activity is attributed to the more favorable two-electron oxidation of water to H2O2, compared with the four-electron oxidation of water to O2.