Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character...Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions.展开更多
Background:A high prevalence of diabetes mellitus(DM)coexisting with autoimmune pancreatitis(AIP)is observed.However,evidence on the circumstances under which corticosteroid therapy(CST)for AIP improves or worsens DM ...Background:A high prevalence of diabetes mellitus(DM)coexisting with autoimmune pancreatitis(AIP)is observed.However,evidence on the circumstances under which corticosteroid therapy(CST)for AIP improves or worsens DM is scarce.This study aimed to demonstrate and identify predictors of DM control under the influence of CST.Methods:Patients diagnosed with type 1 AIP were enrolled from a prospectively maintained cohort and were classified into three groups according to the chronology in which AIP and DM were diagnosed:pre-existing DM(pDM),concurrent DM(cDM),and non-DM(nDM).The responses of DM to CST were assessed when corticosteroid was ceased or tapered to a maintenance dose and classified as‘improvement’and‘non-improvement’(including‘no change’and‘exacerbation’).Results:Among 101 patients with type 1 AIP,52(51.5%)patients were complicated with DM at the time of AIP diagnosis,with 36 patients in the cDM group and 16 patients in the pDM group.The incidences of diffuse pancreatic swelling(72.2%)and pancreatic body/tail involvement(91.7%)were significantly higher in the cDM group than in both the pDM and nDM groups.Of the 52 patients with DM,CST was administered in 48 cases.Multivariate logistic analysis identified that elevated serum gamma-glutamyl transferase(GGT)level at AIP diagnosis[odds ratio(OR)=0.032,95%confidence interval(CI):0.003-0.412,P=0.008]and pancreatic atrophy after CST(OR=0.027,95%CI:0.003-0.295,P=0.003)were negatively associated with DM control improvement.Conclusions:Patients with diffuse pancreatic swelling and pancreatic body/tail involvement in pancreatitis tended to be complicated with cDM at AIP diagnosis.CST exerted a beneficial effect on the clinical course of DM in nearly half of the AIP patients complicated with DM at diagnosis,particularly in those without elevated serum GGT levels at diagnosis and who did not experience pancreatic atrophy after CST.展开更多
To fight against invasion by pathogens,plants have evolved an elaborate innate immune system,of which the nucleotide-binding domain leucine-rich repeat-containing receptor(NLR)acts as the sensor and immune executor.Po...To fight against invasion by pathogens,plants have evolved an elaborate innate immune system,of which the nucleotide-binding domain leucine-rich repeat-containing receptor(NLR)acts as the sensor and immune executor.Potyviruses,comprising one of the largest genera of plant viruses,cause severe crop yield losses worldwide.Inherited crop resistance to potyviruses can be used in breeding and plant transgenesis to control disease development.This review summarizes achievements in mapping and cloning NLR genes conferring dominant resistance against potyvirus in the families Fabaceae,Solanaceae,Brassicaceae,and Cucurbitaceae.It compares mechanisms of potyviral protein recognition and downstream signaling employed by NLRs and discusses strategies for exploiting NLRs to better control diseases caused by potyviruses.展开更多
Background:Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic,while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs.Curren...Background:Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic,while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs.Current knockout strategies are mainly aimed at the genes causing hyperacute immune rejection(HAR)that occurs in the first few hours while adaptive immune reactions orchestrated by CD4 T cell thereafter also cause graft failure,in which process the MHCⅡmolecule plays critical roles.Methods:Thus,we generate a 4-gene(GGTA1,CMAH,β4GalNT2,and CIITA)knockout pig by CRISPR/Cas9 and somatic cell nuclear transfer to compromise HAR and CD4 T cell reactions simultaneously.Results:We successfully obtained 4KO piglets with deficiency in all alleles of genes,and at cellular and tissue levels.Additionally,the safety of our animals after gene editing was verified by using whole-genome sequencing and karyotyping.Piglets have survived for more than one year in the barrier,and also survived for more than 3 months in the conventional environment,suggesting that the piglets without MHCⅡcan be raised in the barrier and then gradually mated in the conventional environment.Conclusions:4KO piglets have lower immunogenicity,are safe in genomic level,and are easier to breed than the model with both MHCⅠandⅡdeletion.展开更多
Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to en...Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.展开更多
We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and c...We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.展开更多
Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted ...Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.展开更多
With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate...With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.展开更多
Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum ...Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum supremacy by performing in just 100 s a specific computation which would take a classical supercomputer,as stated by Google’s team,10000 years to complete.[1]In 2021,a strong quantum advantage was demonstrated by Pan and his colleagues from the University of Science and Technology of China,using a quantum processor named Zuchongzhi,which has 66 functional qubits.[2]This year,the record of the number of quantum qubits has been lifted to 127 qubits.[3]Indeed,the number of qubits is limited to a few hundreds due to the finite space of dilution refrigerators,where the superconducting qubits must be placed to be isolated from thermal noise.However,this number is still several orders of magnitude away from the requirement of quantum error correction,which is essential for general-purpose quantum computers.[4–8].展开更多
A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choi...A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choice.In this study,the potential application of enzyme-induced carbonate precipitation(EICP)was investigated for reinforcing a 0.6 m bedding layer on top of clay to improve the bearing capacity of the foundation underneath an underground cable duct.Laboratory experiments were conducted to determine the optimal operational parameters for the extraction of crude urease liquid and optimal grain size range of sea sands to be used to construct the bedding layer.Field tests were planned based on orthogonal experimental design to study the factors that would significantly affect the biocementation effect on site.The dynamic deformation modulus,calcium carbonate content and longterm ground stress variations were used to evaluate the bio-cementation effect and the long-term performance of the EICP-treated bedding layer.The laboratory test results showed that the optimal duration for the extraction of crude urease liquid is 1 h and the optimal usage of soybean husk powder in urease extraction solution is 100 g/L.The calcium carbonate production rate decreases significantly when the concentration of cementation solution exceeds 0.5 mol/L.The results of site trial showed that the number of EICP treatments has the most significant impact on the effectiveness of EICP treatment and the highest dynamic deformation modulus(Evd)of EICP-treated bedding layer reached 50.55 MPa.The area with better bio-cementation effect was found to take higher ground stress which validates that the EICP treatment could improve the bearing capacity of foundation by reinforcing the bedding layer.The field trial described and the analysis introduced in this paper can provide a practical basis for applying EICP technology to the reinforcement of bedding layer in poor ground conditions.展开更多
A large number of studies have shown that propolis has positive effects in the treatment of type 2 diabetes mellitus(T2DM).However,there are have only been a few reports that are based on an ultra-high performance liq...A large number of studies have shown that propolis has positive effects in the treatment of type 2 diabetes mellitus(T2DM).However,there are have only been a few reports that are based on an ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS)analysis of the fecal metabolomics of ethanol extract of propolis(EEP)in the treatment of T2DM.The present investigation was designed to screen potential biomarkers of T2DM by the metabonomic method and to explain the possible anti-diabetes mechanism of EEP according to the changes in the biomarkers.The results showed that EEP improved the body weight(BW)of T2DM mice,lowered blood sugar levels,and significantly restored blood biochemical indicators related to T2DM,such as fasting insulin(FINS),homeostasis model assessment of insulin resistance(HOMA-IR),aspartate transaminase(AST),and alanine aminotransferase(ALT).Liver pathology showed that EEP reversed liver damage caused by T2DM.Metabolomics data identified 27 potential biomarkers in fecal samples.EEP effectively regulated the dysfunction in the metabolic pathways of glycerophospholipids,sphingolipids,riboflavins,and sterol lipids caused by T2DM.In summary,our research results revealed positive effects of EEP in the treatment of T2DM and provided potential candidate markers for further research and in the clinical treatment of T2DM.展开更多
Jasmine [Jasminum sambac(L.) Ait.], a tropical and subtropical plant emits a sweet, heady fragrance during flower opening. However, the molecular mechanisms underlying this phenomenon remain largely unknown. In the pr...Jasmine [Jasminum sambac(L.) Ait.], a tropical and subtropical plant emits a sweet, heady fragrance during flower opening. However, the molecular mechanisms underlying this phenomenon remain largely unknown. In the present study, integrated Illumina sequencing, Pacbio sequencing, and high-throughput chromatin conformation capture(Hi-C) scaffolding was used to generate a 495.60 Mb genome assembly of J.sambac var. unifoliatum cultivar ‘Fuzhou Single-petal’(JSU-FSP), with contig N50 of 16.88 Mb;96.23% of the assembly was assigned to 13 pseudochromosomes. The genome harbors 30 989 protein-coding genes, and 49.47% of the assembled sequences are repetitive sequences. The analysis of duplication modes showed that 51% of genes were duplicated through dispersed duplication, and expanded gene families are mainly involved in photosynthesis, which may be responsible for the light-loving characteristic specific to jasmine. Transcriptome analysis revealed that at least 35 structural genes involved in the biosynthesis of volatile terpenes(VTs), volatile phenylpropanoid/benzenoids(VPBs),fatty acid-derived volatiles(FADVs), and indole were highly expressed in the flower-opening stage, both preharvest and postharvest, and are proposed to be important in endowing flower aroma. Additionally, at least 28 heat shock protein(HSP) and 11 β-glucosidase(BGLU) genes may be involved in the formation of floral fragrance. These findings provide insights into the formation of the floral fragrance of jasmine and will promote germplasm utilization for breeding improved jasmine varieties.展开更多
Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental p...Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental preparations of Gibbs states and excited states of Heisenberg X X and X X Z models by using a 5-qubit programmable superconducting processor.In the experiments,we apply a hybrid quantum–classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits.We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits,which enable us to prepare excited states at arbitrary energy density.We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error.Based on numerical results,we further show that the time complexity of our approach scales polynomially in the number of qubits,revealing its potential in solving large-scale problems.展开更多
An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non...An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non-uniform load is considered.The distribution of multi-source parameters related to the residual anti extrusion strength and residual anti internal pressure strength of the casing after wear are determined using the probability theory.Considering the technical casing of X101 well in Xinjiang Oilfield as an example,it is shown that the randomness of casing wear depth,formation elastic modulus and formation Poisson’s ratio are the main factors that affect the uncertainty of residual strength.The wider the confidence interval is,the greater the uncertainty range is.Compared with the calculations resulting from the proposed uncertainty analysis method,the residual strength obtained by means of traditional single value calculation method is either larger or smaller,which leads to the conclusion that the residual strength should be considered in terms of a range of probabilities rather than a single value.展开更多
The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation.In superconducting circuits,one notorious error comes from the crosstalk of microwave signals applied to...The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation.In superconducting circuits,one notorious error comes from the crosstalk of microwave signals applied to different qubit control lines.In this work,we present a method for the calibration and cancellation of the microwave crosstalk and experimentally demonstrate its effectiveness in a superconducting 10-qubit chain.The method is convenient and efficient especially for calibrating the microwave crosstalk with large amplitudes and variations,which can be performed successively to reduce the microwave crosstalk by two to three orders.The qubit chain with microwave driving is governed by one-dimensional(1D)Bose-Hubbard model in transverse field,which is nonintegrable and shows thermalization behaviour during the time evolution from certain initial states.Such thermalization process is observed with excellent agreement between experiment and theory further confirming the effective global cancellation of the microwave crosstalk.展开更多
BACKGROUND Immune checkpoint inhibitor-associated interstitial lung disease(ICI-ILD)and opportunistic pneumonias are the main pulmonary complications during immunotherapy for malignancies.The organizing pneumonia(OP)p...BACKGROUND Immune checkpoint inhibitor-associated interstitial lung disease(ICI-ILD)and opportunistic pneumonias are the main pulmonary complications during immunotherapy for malignancies.The organizing pneumonia(OP)pattern is one of the common radiological manifestations of ICI-ILD,and OP is the most common cause of reversed halo cycles and consolidations.However,opportunistic pneumonias should be excluded.CASE SUMMARY In this report,we described a case of a 44-year-old man with esophageal cancer who showed multiple reversed-halo cycles and consolidations on chest computed tomography(CT)after he had a cold during immunotherapy.He was diagnosed with esophageal squamous-cell cancer(T2NIM0)after surgery.Then,he was successfully treated with 6 cycles of chemotherapy plus tislelizumab,one cycle of radiotherapy and 9 cycles of tislelizumab.Two months later,he complained of low-grade fever and cough with nonpurulent sputum after he had a cold.Community-acquired pneumonia was considered,but moxifloxacin was ineffective.Chest CT showed multiple reversed-halo cycles and consolidations.Mycobacterium tuberculosis was identified with next-generation sequence analysis of bronchoalveolar lavage fluid(BALF).Two months later,he improved with standard anti-tuberculosis medications.Both the cycles and consolidations disappeared in the repeat CT after 6 mo of medications.CONCLUSION When chest CT shows reversed-halo cycles and consolidations in patients during anticancer immunotherapy,both ICI-ILD and infectious pneumonia should be considered.BALF microbiological analysis was helpful to differentiate them.展开更多
基金The authors gratefully acknowledge the financial support of National NaturalScience Foundation of China(Grant No.41972276)Natural Science Foundation of Fujian Province,China(Grant No.2020J06013)"Foal Eagle Program"Youth Top-notch Talent Project of Fujian Province,China(Grant No.00387088).
文摘Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions.
基金from CAMS Innovation Fund for Medical Sciences(CIFMS)(2021-I2M-1-002)National Key Clinical Specialty Construction Project(ZK108000)+1 种基金National High-Level Hospital Clinical Research Funding(2022-PUMCH-B-024)National Natural Science Foundation of China,Joint Fund Project(U20A600).
文摘Background:A high prevalence of diabetes mellitus(DM)coexisting with autoimmune pancreatitis(AIP)is observed.However,evidence on the circumstances under which corticosteroid therapy(CST)for AIP improves or worsens DM is scarce.This study aimed to demonstrate and identify predictors of DM control under the influence of CST.Methods:Patients diagnosed with type 1 AIP were enrolled from a prospectively maintained cohort and were classified into three groups according to the chronology in which AIP and DM were diagnosed:pre-existing DM(pDM),concurrent DM(cDM),and non-DM(nDM).The responses of DM to CST were assessed when corticosteroid was ceased or tapered to a maintenance dose and classified as‘improvement’and‘non-improvement’(including‘no change’and‘exacerbation’).Results:Among 101 patients with type 1 AIP,52(51.5%)patients were complicated with DM at the time of AIP diagnosis,with 36 patients in the cDM group and 16 patients in the pDM group.The incidences of diffuse pancreatic swelling(72.2%)and pancreatic body/tail involvement(91.7%)were significantly higher in the cDM group than in both the pDM and nDM groups.Of the 52 patients with DM,CST was administered in 48 cases.Multivariate logistic analysis identified that elevated serum gamma-glutamyl transferase(GGT)level at AIP diagnosis[odds ratio(OR)=0.032,95%confidence interval(CI):0.003-0.412,P=0.008]and pancreatic atrophy after CST(OR=0.027,95%CI:0.003-0.295,P=0.003)were negatively associated with DM control improvement.Conclusions:Patients with diffuse pancreatic swelling and pancreatic body/tail involvement in pancreatitis tended to be complicated with cDM at AIP diagnosis.CST exerted a beneficial effect on the clinical course of DM in nearly half of the AIP patients complicated with DM at diagnosis,particularly in those without elevated serum GGT levels at diagnosis and who did not experience pancreatic atrophy after CST.
基金supported by the National Natural Science Foundation of China(31770164)Jiangsu Province’s Innovation Program(JSSCTD202142).
文摘To fight against invasion by pathogens,plants have evolved an elaborate innate immune system,of which the nucleotide-binding domain leucine-rich repeat-containing receptor(NLR)acts as the sensor and immune executor.Potyviruses,comprising one of the largest genera of plant viruses,cause severe crop yield losses worldwide.Inherited crop resistance to potyviruses can be used in breeding and plant transgenesis to control disease development.This review summarizes achievements in mapping and cloning NLR genes conferring dominant resistance against potyvirus in the families Fabaceae,Solanaceae,Brassicaceae,and Cucurbitaceae.It compares mechanisms of potyviral protein recognition and downstream signaling employed by NLRs and discusses strategies for exploiting NLRs to better control diseases caused by potyviruses.
基金National Key Research and Development Program,Grant/Award Number:2019YFA0903800,2021YFA0805701,2021YFA0805905 and 2022YFA1103603CAS Project for Young Scientists in Basic Research,Grant/Award Number:YSBR-012+2 种基金STI 2030-Major Project,Grant/Award Number:2023ZD0407503National Natural Science Foundation of China,Grant/Award Number:32071456 and 82241224Strategic Priority Research Program of the Chinese Academy of Sciences,Grant/Award Number:XDA16030000。
文摘Background:Pig organ xenotransplantation is a potential solution for the severe organ shortage in clinic,while immunogenic genes need to be eliminated to improve the immune compatibility between humans and pigs.Current knockout strategies are mainly aimed at the genes causing hyperacute immune rejection(HAR)that occurs in the first few hours while adaptive immune reactions orchestrated by CD4 T cell thereafter also cause graft failure,in which process the MHCⅡmolecule plays critical roles.Methods:Thus,we generate a 4-gene(GGTA1,CMAH,β4GalNT2,and CIITA)knockout pig by CRISPR/Cas9 and somatic cell nuclear transfer to compromise HAR and CD4 T cell reactions simultaneously.Results:We successfully obtained 4KO piglets with deficiency in all alleles of genes,and at cellular and tissue levels.Additionally,the safety of our animals after gene editing was verified by using whole-genome sequencing and karyotyping.Piglets have survived for more than one year in the barrier,and also survived for more than 3 months in the conventional environment,suggesting that the piglets without MHCⅡcan be raised in the barrier and then gradually mated in the conventional environment.Conclusions:4KO piglets have lower immunogenicity,are safe in genomic level,and are easier to breed than the model with both MHCⅠandⅡdeletion.
基金supported by the Key-Area Research and Development Program of Guangdong Province(Grant No.2021B0909060002)National Natural Science Foundation of China(Grant Nos.62204219,62204140)+1 种基金Major Program of Natural Science Foundation of Zhejiang Province(Grant No.LDT23F0401)Thanks to Professor Zhang Yishu from Zhejiang University,Professor Gao Xu from Soochow University,and Professor Zhong Shuai from Guangdong Institute of Intelligence Science and Technology for their support。
文摘Embedded memory,which heavily relies on the manufacturing process,has been widely adopted in various industrial applications.As the field of embedded memory continues to evolve,innovative strategies are emerging to enhance performance.Among them,resistive random access memory(RRAM)has gained significant attention due to its numerousadvantages over traditional memory devices,including high speed(<1 ns),high density(4 F^(2)·n^(-1)),high scalability(~nm),and low power consumption(~pJ).This review focuses on the recent progress of embedded RRAM in industrial manufacturing and its potentialapplications.It provides a brief introduction to the concepts and advantages of RRAM,discusses the key factors that impact its industrial manufacturing,and presents the commercial progress driven by cutting-edge nanotechnology,which has been pursued by manysemiconductor giants.Additionally,it highlights the adoption of embedded RRAM in emerging applications within the realm of the Internet of Things and future intelligent computing,with a particular emphasis on its role in neuromorphic computing.Finally,the review discusses thecurrent challenges and provides insights into the prospects of embedded RRAM in the era of big data and artificial intelligence.
基金supported by the National Natural Science Foundation of China(Grant No.92365206)the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)+1 种基金supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘We introduce Quafu-Qcover,an open-source cloud-based software package developed for solving combinatorial optimization problems using quantum simulators and hardware backends.Quafu-Qcover provides a standardized and comprehensive workflow that utilizes the quantum approximate optimization algorithm(QAOA).It facilitates the automatic conversion of the original problem into a quadratic unconstrained binary optimization(QUBO)model and its corresponding Ising model,which can be subsequently transformed into a weight graph.The core of Qcover relies on a graph decomposition-based classical algorithm,which efficiently derives the optimal parameters for the shallow QAOA circuit.Quafu-Qcover incorporates a dedicated compiler capable of translating QAOA circuits into physical quantum circuits that can be executed on Quafu cloud quantum computers.Compared to a general-purpose compiler,our compiler demonstrates the ability to generate shorter circuit depths,while also exhibiting superior speed performance.Additionally,the Qcover compiler has the capability to dynamically create a library of qubits coupling substructures in real-time,utilizing the most recent calibration data from the superconducting quantum devices.This ensures that computational tasks can be assigned to connected physical qubits with the highest fidelity.The Quafu-Qcover allows us to retrieve quantum computing sampling results using a task ID at any time,enabling asynchronous processing.Moreover,it incorporates modules for results preprocessing and visualization,facilitating an intuitive display of solutions for combinatorial optimization problems.We hope that Quafu-Qcover can serve as an instructive illustration for how to explore application problems on the Quafu cloud quantum computers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 92065113, 11904357, 62075208, and 12174367)the Innovation Programme for Quantum Science and Technology (Grant No. 2021ZD0301604)+1 种基金the National Key Research and Development Program of China (Grant No. 2021YFE0113100)supported by Beijing Academy of Quantum Information Sciences
文摘Weak measurement amplification,which is considered as a very promising scheme in precision measurement,has been applied to various small physical quantities estimations.Since many physical quantities can be converted into phase signals,it is interesting and important to consider measuring small longitudinal phase shifts by using weak measurement.Here,we propose and experimentally demonstrate a novel weak measurement amplification-based small longitudinal phase estimation,which is suitable for polarization interferometry.We realize one order of magnitude amplification measurement of a small phase signal directly introduced by a liquid crystal variable retarder and show that it is robust to the imperfection of interference.Besides,we analyze the effect of magnification error which is never considered in the previous works,and find the constraint on the magnification.Our results may find important applications in high-precision measurements,e.g.,gravitational wave detection.
基金supported by the Beijing Academy of Quantum Information Sciencessupported by the National Natural Science Foundation of China(Grant No.92365206)+2 种基金the support of the China Postdoctoral Science Foundation(Certificate Number:2023M740272)supported by the National Natural Science Foundation of China(Grant No.12247168)China Postdoctoral Science Foundation(Certificate Number:2022TQ0036)。
文摘With the rapid advancement of quantum computing,hybrid quantum–classical machine learning has shown numerous potential applications at the current stage,with expectations of being achievable in the noisy intermediate-scale quantum(NISQ)era.Quantum reinforcement learning,as an indispensable study,has recently demonstrated its ability to solve standard benchmark environments with formally provable theoretical advantages over classical counterparts.However,despite the progress of quantum processors and the emergence of quantum computing clouds,implementing quantum reinforcement learning algorithms utilizing parameterized quantum circuits(PQCs)on NISQ devices remains infrequent.In this work,we take the first step towards executing benchmark quantum reinforcement problems on real devices equipped with at most 136 qubits on the BAQIS Quafu quantum computing cloud.The experimental results demonstrate that the policy agents can successfully accomplish objectives under modified conditions in both the training and inference phases.Moreover,we design hardware-efficient PQC architectures in the quantum model using a multi-objective evolutionary algorithm and develop a learning algorithm that is adaptable to quantum devices.We hope that the Quafu-RL can be a guiding example to show how to realize machine learning tasks by taking advantage of quantum computers on the quantum cloud platform.
基金The authors thank Gang-Qin Liu for useful discussions and acknowledge funding support from the National Natural Science Foundation of China(Gant Nos.62222515 and 12174438)the Basic Frontier Science Research Program of Chinese Academy of Sciences(Gant No.ZDBS-LY-JSC003)CAS Project for Young Scientists in Basic Research(Gant No.YSBR-100).
文摘Over the past few years,quantum computation based on superconducting circuits has achieved remarkable progress.A milestone occurred in 2019 when Google released Sycamore,a processor with 54 qubits,and claimed quantum supremacy by performing in just 100 s a specific computation which would take a classical supercomputer,as stated by Google’s team,10000 years to complete.[1]In 2021,a strong quantum advantage was demonstrated by Pan and his colleagues from the University of Science and Technology of China,using a quantum processor named Zuchongzhi,which has 66 functional qubits.[2]This year,the record of the number of quantum qubits has been lifted to 127 qubits.[3]Indeed,the number of qubits is limited to a few hundreds due to the finite space of dilution refrigerators,where the superconducting qubits must be placed to be isolated from thermal noise.However,this number is still several orders of magnitude away from the requirement of quantum error correction,which is essential for general-purpose quantum computers.[4–8].
基金The authors gratefully acknowledge the financial support of National Natural Science Foundation of China(Grant No.41972276)Natural Science Foundation of Fujian Province(Grant No.2020J06013)“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,China(Grant No.00387088).
文摘A suitable bearing capacity of foundation is critical for the safety of civil structures.Sometimes foundation reinforcement is necessary and an effective and environmentally friendly method would be the preferred choice.In this study,the potential application of enzyme-induced carbonate precipitation(EICP)was investigated for reinforcing a 0.6 m bedding layer on top of clay to improve the bearing capacity of the foundation underneath an underground cable duct.Laboratory experiments were conducted to determine the optimal operational parameters for the extraction of crude urease liquid and optimal grain size range of sea sands to be used to construct the bedding layer.Field tests were planned based on orthogonal experimental design to study the factors that would significantly affect the biocementation effect on site.The dynamic deformation modulus,calcium carbonate content and longterm ground stress variations were used to evaluate the bio-cementation effect and the long-term performance of the EICP-treated bedding layer.The laboratory test results showed that the optimal duration for the extraction of crude urease liquid is 1 h and the optimal usage of soybean husk powder in urease extraction solution is 100 g/L.The calcium carbonate production rate decreases significantly when the concentration of cementation solution exceeds 0.5 mol/L.The results of site trial showed that the number of EICP treatments has the most significant impact on the effectiveness of EICP treatment and the highest dynamic deformation modulus(Evd)of EICP-treated bedding layer reached 50.55 MPa.The area with better bio-cementation effect was found to take higher ground stress which validates that the EICP treatment could improve the bearing capacity of foundation by reinforcing the bedding layer.The field trial described and the analysis introduced in this paper can provide a practical basis for applying EICP technology to the reinforcement of bedding layer in poor ground conditions.
基金supported by the Shanxi Proxince Higher Education Revitalization Plan “1331 Project” (J201811301)
文摘A large number of studies have shown that propolis has positive effects in the treatment of type 2 diabetes mellitus(T2DM).However,there are have only been a few reports that are based on an ultra-high performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry(UPLC-Q-TOF-MS)analysis of the fecal metabolomics of ethanol extract of propolis(EEP)in the treatment of T2DM.The present investigation was designed to screen potential biomarkers of T2DM by the metabonomic method and to explain the possible anti-diabetes mechanism of EEP according to the changes in the biomarkers.The results showed that EEP improved the body weight(BW)of T2DM mice,lowered blood sugar levels,and significantly restored blood biochemical indicators related to T2DM,such as fasting insulin(FINS),homeostasis model assessment of insulin resistance(HOMA-IR),aspartate transaminase(AST),and alanine aminotransferase(ALT).Liver pathology showed that EEP reversed liver damage caused by T2DM.Metabolomics data identified 27 potential biomarkers in fecal samples.EEP effectively regulated the dysfunction in the metabolic pathways of glycerophospholipids,sphingolipids,riboflavins,and sterol lipids caused by T2DM.In summary,our research results revealed positive effects of EEP in the treatment of T2DM and provided potential candidate markers for further research and in the clinical treatment of T2DM.
基金supported by the Construction of Plateau Discipline of Fujian Province (Grant No. 102/71201801101)the Construction Project for Technological Innovation and Service System of Tea Industry Chain of Fujian Agriculture and Forestry University (Grant No. K1520005A01)。
文摘Jasmine [Jasminum sambac(L.) Ait.], a tropical and subtropical plant emits a sweet, heady fragrance during flower opening. However, the molecular mechanisms underlying this phenomenon remain largely unknown. In the present study, integrated Illumina sequencing, Pacbio sequencing, and high-throughput chromatin conformation capture(Hi-C) scaffolding was used to generate a 495.60 Mb genome assembly of J.sambac var. unifoliatum cultivar ‘Fuzhou Single-petal’(JSU-FSP), with contig N50 of 16.88 Mb;96.23% of the assembly was assigned to 13 pseudochromosomes. The genome harbors 30 989 protein-coding genes, and 49.47% of the assembled sequences are repetitive sequences. The analysis of duplication modes showed that 51% of genes were duplicated through dispersed duplication, and expanded gene families are mainly involved in photosynthesis, which may be responsible for the light-loving characteristic specific to jasmine. Transcriptome analysis revealed that at least 35 structural genes involved in the biosynthesis of volatile terpenes(VTs), volatile phenylpropanoid/benzenoids(VPBs),fatty acid-derived volatiles(FADVs), and indole were highly expressed in the flower-opening stage, both preharvest and postharvest, and are proposed to be important in endowing flower aroma. Additionally, at least 28 heat shock protein(HSP) and 11 β-glucosidase(BGLU) genes may be involved in the formation of floral fragrance. These findings provide insights into the formation of the floral fragrance of jasmine and will promote germplasm utilization for breeding improved jasmine varieties.
基金Project supported by the State Key Development Program for Basic Research of China(Grant No.2017YFA0304300)the National Natural Science Foundation of China(Grant Nos.11934018,11747601,and 11975294)+4 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB28000000)Scientific Instrument Developing Project of Chinese Academy of Sciences(Grant No.YJKYYQ20200041)Beijing Natural Science Foundation(Grant No.Z200009)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2020B0303030001)Chinese Academy of Sciences(Grant No.QYZDB-SSW-SYS032)。
文摘Quantum computers promise to solve finite-temperature properties of quantum many-body systems,which is generally challenging for classical computers due to high computational complexities.Here,we report experimental preparations of Gibbs states and excited states of Heisenberg X X and X X Z models by using a 5-qubit programmable superconducting processor.In the experiments,we apply a hybrid quantum–classical algorithm to generate finite temperature states with classical probability models and variational quantum circuits.We reveal that the Hamiltonians can be fully diagonalized with optimized quantum circuits,which enable us to prepare excited states at arbitrary energy density.We demonstrate that the approach has a self-verifying feature and can estimate fundamental thermal observables with a small statistical error.Based on numerical results,we further show that the time complexity of our approach scales polynomially in the number of qubits,revealing its potential in solving large-scale problems.
基金supported by the National Natural Science Foundation of China[51804061,51974052,51774063]the Academician Led Special Project of Chongqing Science and Technology Commission[cstc2017zdcy-yszxX0009]+1 种基金the Chongqing Research Program of Basic Research and Frontier Technology[cstc2019jcyj-msxmX0199,cstc2018jcyjAX0417]the Chongqing Education Committee foundation[KJQN201901544,KJZD-K201801501].
文摘An uncertainty analysis method is proposed for the assessment of the residual strength of a casing subjected to wear and non-uniform load in a deep well.The influence of casing residual stress,out-of-roundness and non-uniform load is considered.The distribution of multi-source parameters related to the residual anti extrusion strength and residual anti internal pressure strength of the casing after wear are determined using the probability theory.Considering the technical casing of X101 well in Xinjiang Oilfield as an example,it is shown that the randomness of casing wear depth,formation elastic modulus and formation Poisson’s ratio are the main factors that affect the uncertainty of residual strength.The wider the confidence interval is,the greater the uncertainty range is.Compared with the calculations resulting from the proposed uncertainty analysis method,the residual strength obtained by means of traditional single value calculation method is either larger or smaller,which leads to the conclusion that the residual strength should be considered in terms of a range of probabilities rather than a single value.
基金the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)the National Natural Science Foundation of China(Grant No.11874063),the National Natural Science Foundation of China(Grant No.11890704)+3 种基金the National Natural Science Foundation of China(Grant Nos.11934018 and T2121001)the Natural Science Foundation of Beijing(Grant No.Z190012)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)Beijing Natural Science Foundation(Grant No.Z200009)。
文摘The precise control and manipulation of the qubit state are vital for quantum simulation and quantum computation.In superconducting circuits,one notorious error comes from the crosstalk of microwave signals applied to different qubit control lines.In this work,we present a method for the calibration and cancellation of the microwave crosstalk and experimentally demonstrate its effectiveness in a superconducting 10-qubit chain.The method is convenient and efficient especially for calibrating the microwave crosstalk with large amplitudes and variations,which can be performed successively to reduce the microwave crosstalk by two to three orders.The qubit chain with microwave driving is governed by one-dimensional(1D)Bose-Hubbard model in transverse field,which is nonintegrable and shows thermalization behaviour during the time evolution from certain initial states.Such thermalization process is observed with excellent agreement between experiment and theory further confirming the effective global cancellation of the microwave crosstalk.
基金Supported by National High Level Hospital Clinical Research Funding,No.2022-PUMCH-C-069 and No.2022-PUMCH-A-009.
文摘BACKGROUND Immune checkpoint inhibitor-associated interstitial lung disease(ICI-ILD)and opportunistic pneumonias are the main pulmonary complications during immunotherapy for malignancies.The organizing pneumonia(OP)pattern is one of the common radiological manifestations of ICI-ILD,and OP is the most common cause of reversed halo cycles and consolidations.However,opportunistic pneumonias should be excluded.CASE SUMMARY In this report,we described a case of a 44-year-old man with esophageal cancer who showed multiple reversed-halo cycles and consolidations on chest computed tomography(CT)after he had a cold during immunotherapy.He was diagnosed with esophageal squamous-cell cancer(T2NIM0)after surgery.Then,he was successfully treated with 6 cycles of chemotherapy plus tislelizumab,one cycle of radiotherapy and 9 cycles of tislelizumab.Two months later,he complained of low-grade fever and cough with nonpurulent sputum after he had a cold.Community-acquired pneumonia was considered,but moxifloxacin was ineffective.Chest CT showed multiple reversed-halo cycles and consolidations.Mycobacterium tuberculosis was identified with next-generation sequence analysis of bronchoalveolar lavage fluid(BALF).Two months later,he improved with standard anti-tuberculosis medications.Both the cycles and consolidations disappeared in the repeat CT after 6 mo of medications.CONCLUSION When chest CT shows reversed-halo cycles and consolidations in patients during anticancer immunotherapy,both ICI-ILD and infectious pneumonia should be considered.BALF microbiological analysis was helpful to differentiate them.