期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of ternary transition metal sulfide FeNi_(2)S_(4)on hydrogen storage performance of MgH_(2) 被引量:5
1
作者 Yaokun Fu Lu Zhang +6 位作者 Yuan Li Sanyang Guo Han Yu Wenfeng Wang kailiang ren Wei Zhang Shumin Han 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2927-2938,共12页
Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-bas... Hydrogen storage is a key link in hydrogen economy,where solid-state hydrogen storage is considered as the most promising approach because it can meet the requirement of high density and safety.Thereinto,magnesium-based materials(MgH_(2))are currently deemed as an attractive candidate due to the potentially high hydrogen storage density(7.6 wt%),however,the stable thermodynamics and slow kinetics limit the practical application.In this study,we design a ternary transition metal sulfide FeNi_(2)S_(4)with a hollow balloon structure as a catalyst of MgH_(2)to address the above issues by constructing a MgH_(2)/Mg_(2)NiH_(4)-MgS/Fe system.Notably,the dehydrogenation/hydrogenation of MgH_(2)has been significantly improved due to the synergistic catalysis of active species of Mg_(2)Ni/Mg_(2)NiH_(4),MgS and Fe originated from the MgH_(2)-FeNi_(2)S_(4)composite.The hydrogen absorption capacity of the MgH_(2)-FeNi_(2)S_(4)composite reaches to 4.02 wt%at 373 K for 1 h,a sharp contrast to the milled-MgH_(2)(0.67 wt%).In terms of dehydrogenation process,the initial dehydrogenation temperature of the composite is 80 K lower than that of the milled-MgH_(2),and the dehydrogenation activation energy decreases by 95.7 kJ·mol-1 compared with the milled-MgH_(2)(161.2 kJ·mol^(-1)).This method provides a new strategy for improving the dehydrogenation/hydrogenation performance of the MgH_(2)material. 展开更多
关键词 Hydrogen storage materials Magnesium hydride FeNi_(2)S_(4) Hydrogen storage kinetics CATALYSTS
下载PDF
Catalytic effect of MOF-derived transition metal catalyst FeCoS@C on hydrogen storage of magnesium 被引量:5
2
作者 Yaokun Fu Lu Zhang +6 位作者 Yuan Li Sanyang Guo Zhichao Yu Wenfeng Wang kailiang ren Qiuming Peng Shumin Han 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期59-69,共11页
The introduction of the heterogeneous catalysts with high activity can significantly improve hydrogen storage performance of MgH_(2),therefore,in this paper,we synthesize a carbon-supported transition metal compound,F... The introduction of the heterogeneous catalysts with high activity can significantly improve hydrogen storage performance of MgH_(2),therefore,in this paper,we synthesize a carbon-supported transition metal compound,FeCoS@C derivative from ZIF-67,by utilizing the in situ formed C dispersive multiphase Mg_(2)Co,α-Fe,Co_(3)Fe_(7),and MgS to implement catalysis to MgH_(2).Noteworthily,MgH_(2)-FeCoS@C rapidly ab-sorbs 6.78 wt%H_(2)within 60 s at 573 K and can also absorb 4.56 wt%H_(2)in 900 s at 473 K.Besides,the addition of FeCoS@C results in decreasing of the initial dehydrogenation temperatures of MgH_(2)from 620 to 550 K.The dehydrogenation activation energy of MgH_(2)decreases from 160.7 to 91.9 kJ mol^(-1).Studies show that the Mg_(2)Co,α-Fe,and Co_(3)Fe_(7)act as“hydrogen channels”to accelerate hydrogen transfer due to the presence of transition metals,and MgS with excellent catalytic effect formed from MgH_(2)-FeCoS@C provides a strong and stable catalytic effect.Besides,the carbon skeleton obtained by the carbonization of ZIF-67 not only serves as a dispersion for the multiphase catalytic system,but also provides more active sites for the catalysts.Our study shows that the multiphase and multiscale catalytic system provides an effective strategy for improving the hydrogen storage performance of MgH_(2). 展开更多
关键词 Hydrogen storage material Magnesium hydride Heterogeneous catalyst Synergistic catalytic MOF materials
原文传递
Flexoelectricity-enhanced photovoltaic effect in trapezoid-shaped NaNbO_(3)nanotube array composites
3
作者 Fang Yu Junyuan Tian +5 位作者 Fengying Jiang Yunjie Liu Chaohai Li Chengwei Wang Zhong Lin Wang kailiang ren 《Nano Research》 SCIE EI CSCD 2023年第9期11914-11924,共11页
In this work,we successfully prepared vertically aligned NaNbO_(3)nanotube(NN-NT)with trapezoidal shapes,in which the orthorhombic and monoclinic phases coexisted.According to the structure analysis,the NN-NT/epoxy co... In this work,we successfully prepared vertically aligned NaNbO_(3)nanotube(NN-NT)with trapezoidal shapes,in which the orthorhombic and monoclinic phases coexisted.According to the structure analysis,the NN-NT/epoxy composite film had excellent flexoelectric properties due to the lattice distortion caused by defects and irregular shape.The flexoelectric effect is the greatest in the vertical direction in the flexible NN-NT/epoxy composite film,and the flexoelectric coefficient()is 2.77×10^(−8)C·m^(−1),which is approximately 5-fold higher than that of the pure epoxy film.The photovoltaic current of the NN-NT/epoxy composite film increased from 39.9 to 71.8 nA·cm^(−2)in the direction of spontaneous polarization when the sample was bent upward due to the flexoelectricity-enhanced photovoltaic(FPV)effect.The flexoelectric effect of the NN-NT/epoxy composite film could modulate the photovoltaic response by increasing it by 80%or reducing it to 65%of the original value.This work provides a new idea for further exploration in efficient and lossless ferroelectric memory devices. 展开更多
关键词 flexoelectric effect photovoltaic effect flexoelectricity-enhanced photovoltaic(FPV)effect trapezoid NaNbO_(3)nanotube(NN-NT)array NN-NT/epoxy composite film
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部