The Chinese traditional medicine,agarwood,is a commonly used medicine for regulating qi,which has many clinical applications because of its unique curative effect.In this study,CiteSpace software was used to visually ...The Chinese traditional medicine,agarwood,is a commonly used medicine for regulating qi,which has many clinical applications because of its unique curative effect.In this study,CiteSpace software was used to visually analyze the application and development trend of agarwood in the literature from CNKI website in the period of 2007-2022.The analysis results showed that the research on agarwood has basically formed core groups of authors,and universities and their affiliated hospitals are main publishing institutions.Moreover,in this study,several research directions of agarwood were also summarized,including clinical research,chemical composition,structural identification and quality standards,showing that agarwood has rich and flexible application prospects in many aspects.On this basis,several suggestions were put forward:strengthening the cooperation between universities and research institutes and building a scientific research cooperation community,and promoting the combination of clinical research and laboratory research.展开更多
Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influen...Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influences of rotation angles (θ = 0°, 45°, 90°, 105°) on the surface morphology, microstructure, and mechanical properties of Inconel 718 (IN718) alloy produced by HP-LPBF. Results show that adopting low rotation angles (e.g., 0° and 45°) is prone to relatively poor surface finish and lack-of-fusion defects, whereas adopting high rotation angles (e.g., 90° and 105°) induces smaller surface roughness and better relative density. Each case reveals a noticeable edge effect but the maximal heights witness a downward trend with the increase of rotation angle. There are some minor differences in the primary dendrite arm spacing and grain morphology by varying the rotation angles. Moreover, the tensile property is slightly enhanced as the rotation angle increases. The present work suggests that high rotation angles like 90° and 105° would probably be more favorable for the 1 kW HP-LPBF process than rotation angles with relatively low values.展开更多
基金Supported by Undergraduate Training Program for Innovation and Entrepreneurship of Guangxi University of Chinese Medicine (S202310600135S202310600049).
文摘The Chinese traditional medicine,agarwood,is a commonly used medicine for regulating qi,which has many clinical applications because of its unique curative effect.In this study,CiteSpace software was used to visually analyze the application and development trend of agarwood in the literature from CNKI website in the period of 2007-2022.The analysis results showed that the research on agarwood has basically formed core groups of authors,and universities and their affiliated hospitals are main publishing institutions.Moreover,in this study,several research directions of agarwood were also summarized,including clinical research,chemical composition,structural identification and quality standards,showing that agarwood has rich and flexible application prospects in many aspects.On this basis,several suggestions were put forward:strengthening the cooperation between universities and research institutes and building a scientific research cooperation community,and promoting the combination of clinical research and laboratory research.
文摘Rotation angle of the laser scan direction between two adjacent layers is a key controlling parameter during the high-power (≥ 1 kW) laser powder bed fusion (HP-LPBF) process. This study investigates the influences of rotation angles (θ = 0°, 45°, 90°, 105°) on the surface morphology, microstructure, and mechanical properties of Inconel 718 (IN718) alloy produced by HP-LPBF. Results show that adopting low rotation angles (e.g., 0° and 45°) is prone to relatively poor surface finish and lack-of-fusion defects, whereas adopting high rotation angles (e.g., 90° and 105°) induces smaller surface roughness and better relative density. Each case reveals a noticeable edge effect but the maximal heights witness a downward trend with the increase of rotation angle. There are some minor differences in the primary dendrite arm spacing and grain morphology by varying the rotation angles. Moreover, the tensile property is slightly enhanced as the rotation angle increases. The present work suggests that high rotation angles like 90° and 105° would probably be more favorable for the 1 kW HP-LPBF process than rotation angles with relatively low values.