In the present paper an effort has been made to investigate effect of dispersion of CdS nanoparticles on the thermal and mechanical properties of PS/PMMA blends. Samples have been prepared through dispersion of CdS na...In the present paper an effort has been made to investigate effect of dispersion of CdS nanoparticles on the thermal and mechanical properties of PS/PMMA blends. Samples have been prepared through dispersion of CdS nanoparticles (prepared separately) during solution casting blend fabrication processing. These nanocomposites samples are structurally characterized through Wide angle X-ray Scattering (WAXS) and Small Angle X-ray Scattering (SAXS) techniques. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out in lieu of surface morphological characterization. The measurements of glass transition temperature and stress-strain analyses have been performed through Dynamic Mechanical Analyzer (DMA). The thermal conductivity of nanocomposite samples has been determined using Hot Disk Thermal Constants Analyzer. The study shows that the incorporation of dispersed CdS nanoparticles in PS/PMMA blend matrix significantly alter their glass transition behaviour, thermal conductivity and tensile properties.展开更多
Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through ...Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.展开更多
Kinetic studies of two-phase transformations i.e. glass transition and crystallization for GexSe70Sb30-x (x = 5, 10, 15, 20) glasses have been performed using differential scanning calorimetry (DSC) at different heati...Kinetic studies of two-phase transformations i.e. glass transition and crystallization for GexSe70Sb30-x (x = 5, 10, 15, 20) glasses have been performed using differential scanning calorimetry (DSC) at different heating rates under non-isothermal condition. The glass transition and crystallization regions have been investigated in terms of their characteristic temperatures i.e. glass transition temperature Tg and crystallization temperature Tc and activation energy. The activation energies of glass transition and crystallization have been calculated by employing peak shift method of Kissinger and isoconversional methods. Activation energies have been found to be dependent on the composition. The thermal stabili- ty is determined from the temperature difference ΔT = Tc — Tg where Tc and Tg are the onset crystallization and glass transition temperature respectively. It has been found that Ge15Se70Sb15 glass is thermally more stable as compared to the other members of the series.展开更多
Polymeric nanocomposites of PS/PMMA/CdS and PS/PVC/CdS samples have been synthesized through dispersion solution casting technique. The nanoparrticles of CdS were prepared by simple chemical method using CdCl2 and H2S...Polymeric nanocomposites of PS/PMMA/CdS and PS/PVC/CdS samples have been synthesized through dispersion solution casting technique. The nanoparrticles of CdS were prepared by simple chemical method using CdCl2 and H2S gas produced from thiourea. The nanoscale morphology of the prepared polymeric nanocomposite samples is probed through small angle X-ray scattering (SAXS). The SAXS study reveals that CdS nanoparticles take place at voids position in the respective plymer blend matrix and exhibit their nano nature with very little tendency to agglomerates.展开更多
文摘In the present paper an effort has been made to investigate effect of dispersion of CdS nanoparticles on the thermal and mechanical properties of PS/PMMA blends. Samples have been prepared through dispersion of CdS nanoparticles (prepared separately) during solution casting blend fabrication processing. These nanocomposites samples are structurally characterized through Wide angle X-ray Scattering (WAXS) and Small Angle X-ray Scattering (SAXS) techniques. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out in lieu of surface morphological characterization. The measurements of glass transition temperature and stress-strain analyses have been performed through Dynamic Mechanical Analyzer (DMA). The thermal conductivity of nanocomposite samples has been determined using Hot Disk Thermal Constants Analyzer. The study shows that the incorporation of dispersed CdS nanoparticles in PS/PMMA blend matrix significantly alter their glass transition behaviour, thermal conductivity and tensile properties.
文摘Thick film of Polystyrene (PS)/CdS semiconducting optical nanocomposite has been synthesized by dispersing nanofiller particles of CdS in PS matrix. The nanostructure of the CdS particles has been ascertained through X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). Small angle x-ray scattering analysis has been performed in order to ascertain nanocomposite character of the PS/CdS sample. Scanning Electron Microscopy (SEM) analyses of these samples have been carried out to establish the surface morphology. Optical Absorption Spectroscopy is used to measure the energy band gap of PS/CdS nanocomposite by using Tauc relation whereas Transient Plane Source Technique is used for the determination of thermal conductivity of the prepared samples. The phase transition temperature and elastic response of the prepared samples have been ascertained through Dynamic Mechanical Analyzer (DMA). This study reveals that the thermal conductivity, Young’s modulus and the toughness of the material are greatly influenced by the existence of interfacial energetic interaction between dispersed CdS nanofiller particles and matrix of PS.
文摘Kinetic studies of two-phase transformations i.e. glass transition and crystallization for GexSe70Sb30-x (x = 5, 10, 15, 20) glasses have been performed using differential scanning calorimetry (DSC) at different heating rates under non-isothermal condition. The glass transition and crystallization regions have been investigated in terms of their characteristic temperatures i.e. glass transition temperature Tg and crystallization temperature Tc and activation energy. The activation energies of glass transition and crystallization have been calculated by employing peak shift method of Kissinger and isoconversional methods. Activation energies have been found to be dependent on the composition. The thermal stabili- ty is determined from the temperature difference ΔT = Tc — Tg where Tc and Tg are the onset crystallization and glass transition temperature respectively. It has been found that Ge15Se70Sb15 glass is thermally more stable as compared to the other members of the series.
文摘Polymeric nanocomposites of PS/PMMA/CdS and PS/PVC/CdS samples have been synthesized through dispersion solution casting technique. The nanoparrticles of CdS were prepared by simple chemical method using CdCl2 and H2S gas produced from thiourea. The nanoscale morphology of the prepared polymeric nanocomposite samples is probed through small angle X-ray scattering (SAXS). The SAXS study reveals that CdS nanoparticles take place at voids position in the respective plymer blend matrix and exhibit their nano nature with very little tendency to agglomerates.