Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,ha...Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.展开更多
AIM:To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) an...AIM:To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor(CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS:The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL)and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. ·RESULTS:Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGFor TGF-β significantly increased expression of fibronectin mRNA (P =0.006, P =0.003 respectively), laminin mRNA (P =0.006, P =0.005), MMP-2 mRNA (P =0.006, P =0.001), COL1A1 mRNA (P =0.001, P =0.001), COL1A2 mRNA (P = 0.001, P =0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF-β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P = 0.003, P =0.002), COL1A1 (P =0.006, P =0.003), and COL1A2 (P =0.006, P =0.004) gene expression, but not laminin (P =0.375, P =0.516). CONCLUSION:Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of retinal pigment epithelial (RPE) cells. This might lead to a novel therapeutic approach to preventing the onset of early proliferative vitreoretinopathy(PVR).展开更多
Computational aesthetics,which bridges science and art,is emerging as a new interdisciplinary field.This paper concentrates on two main aspects of computational aesthetics:aesthetic measurement and quantification,gene...Computational aesthetics,which bridges science and art,is emerging as a new interdisciplinary field.This paper concentrates on two main aspects of computational aesthetics:aesthetic measurement and quantification,generative art,and then proposes a design generation framework.On aesthetic measurement and quantification,we review different types of features used in measurement,the currently used evaluation methods,and their applications.On generative art,we focus on both fractal art and abstract paintings modeled on well-known artists’styles.In general,computational aesthetics exploits computational methods for aesthetic expressions.In other words,it enables computer to appraise beauty and ugliness and also automatically generate aesthetic images.Computational aesthetics has been widely applied to many areas,such as photography,fine art,Chinese hand-writing,web design,graphic design,and industrial design.We finally propose a design generation methodology,utilizing techniques from both aesthetic measurements and generative art.展开更多
Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Br...Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Brassica(Br),and Leavenworthia alabamica(La)S-loci.Here,through multi-genomic comparative analysis of 20 species,we revealed that the most ancient S-locus was formed prior to the divergence of Brassicaceae lineage I and II.Itwas retained and inherited by Arabidopsis,as the Al S-locus in Brassicaceae lineage I.Furthermore,we found that the Br S-locus,which has been widely used in the breeding of Brassica crops to generate hybrid seeds,was formed through segmental translocation(ST)in the hexaploid ancestor of Brassica in Brassicaceae lineage II.The Br S-locus was evolved through a ST from one of the triplicated ancestral S-locus paralogs in the Brassica hexaploidy ancestor,while the other two S-locus paralogs were lost.Together with the previous discovery that the La S-locus was formed through a secondary origin in Brassicaceae lineage I,we conclude the monophyletic origin of Al and Br S-loci and clarify the evolutionary route of S-loci in the Brassicaceae family.Our findings will contribute to evolutionary studies and breeding applications of the S-locus in Brassicaceae.展开更多
Cancer is a collection of complex diseases in which cell proliferation and apoptosis are dysregulated due to the acquisition of genetic changes in cancer cells.These genetic changes,combined with the interrelated phys...Cancer is a collection of complex diseases in which cell proliferation and apoptosis are dysregulated due to the acquisition of genetic changes in cancer cells.These genetic changes,combined with the interrelated physiologic adaptations of neo-angiogenesis,recruitment of stromal support tissues,and suppression of immune recognition,are measurable characteristics in tumor gene expression profiles and biochemical pathways.These measures can lead to identification of disease drivers and,ultimately,can be used to assign therapy.With advances in RNA sequencing technologies,the ability to simultaneously measure all genetic and gene expression changes with a single technology is now possible.The ability to create a comprehensive catalog of genotypic and phenotypic changes in a collection of histologically similar but otherwise distinct tumors should allow for a more precise positioning of existing targeted therapies and identification of new targets for intervention.展开更多
Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To inv...Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.展开更多
High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is ...High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.展开更多
The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0...The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0.7) N/5.0 nm Alx Ga_(1-x) N/8.0 nm Al_(0.3) Ga_(0.7) N with decreasing value of x. The results indicate that the internal quantum efficiency is significantly improved and the efficiency droop is mitigated by using the proposed structure. These improvements are attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes,which result in an increased hole injection efficiency and a decreased electron leakage into the p-type region. In addition,the linearly graded AlGaN inserting layer can generate more holes in EBL due to the polarization-induced hole doping and a tunneling effect probably occurs to enhance the hole transportation to the active regions, which will be beneficial to the radiative recombination.展开更多
Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were ...Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.展开更多
Bed structures in many mountain rivers provide additional resistance to the flow. A field experiment was conducted on debris flow deposits in the valley of the Jiangjiagou Ravine, a tributary of the Yangtze River in s...Bed structures in many mountain rivers provide additional resistance to the flow. A field experiment was conducted on debris flow deposits in the valley of the Jiangjiagou Ravine, a tributary of the Yangtze River in southwestern China, to study the evolution and distribution of bed structures and their relationship with environmental conditions. Water and sediment from the Jiangjiagou main stream were diverted into the experimental channel. Several hydrological schemes were adopted to scour the channel until equilibrium was reached. During this process the evolutions of bed structures and channel configuration were investigated. The results indicate that stronger bed structures mean greater stream power consumption, greater resistance, and greater slope in a certain section when rivers are in dynamic equilibrium. Thus, to some extent the longitudinal profiles of channels can be determined by the distribution of bed structures. In natural cases, the strength and evolution of bed structures are under the influence of environmental conditions such as discharge and bed-load transportation rate. That is, given the same conditions, the same bed structure distribution and longitudinal profile can be predicted.展开更多
The jasmonic acid(JA)signaling pathway is involved in plant growth,development,and response to abiotic or biotic stresses.MYC2,a bHLH transcription factor,is a regulatory hub in the pathway.The function of ZmMYC7,a pu...The jasmonic acid(JA)signaling pathway is involved in plant growth,development,and response to abiotic or biotic stresses.MYC2,a bHLH transcription factor,is a regulatory hub in the pathway.The function of ZmMYC7,a putative MYC2 ortholog,in jasmonate-signaled defense responses of maize has not been reported.In this study,we found that ZmMYC7 possesses JID,TAD,bHLH and Zip domains and essential characteristics of transcription factors:a nuclear location and transactivation activity.The ZmMYC7mutants showed markedly increased sensitivity to Fusarium graminearum and Setosphaeria turcica.The expression levels of the defense-associated genes ZmPR1,ZmPR2,ZmPR3,ZmPR5,ZmPR6,and ZmPR7 in response to F.graminearum infection were downregulated in ZmMYC7 mutants,while ZmPR4 and ZmPR10 were up-regulated.ZmMYC7 interacted with members of the ZmJAZ family,including ZmJAZ8,ZmJAZ11,and ZmJAZ12.ZmMYC7 physically interacted with G-box cis-elements in the ZmERF147 promoter in vitro and transcriptional activation of ZmERF147 by ZmMYC7 was inhibited by ZmJAZ11 and ZmJAZ12.ZmERF147 mutants were more susceptible to F.graminearum infection than inbred line B73with concomitant down-regulation of all defense-associated ZmPRs except ZmPR4.These findings indicate that ZmMYC7 functions in maize resistance to F.graminearum and sheds light on maize defense responses to pathogenic fungi via the JA signaling pathway.展开更多
Visual order is one of the key factors influencing the aesthetic judgment of artworks.This paper reports the results of evaluating the influence of extracted features on visual order in Chinese ink paintings,using a r...Visual order is one of the key factors influencing the aesthetic judgment of artworks.This paper reports the results of evaluating the influence of extracted features on visual order in Chinese ink paintings,using a regression model.We use nine contemporary artists’paintings as examples and extract features related to the visual order of their paintings.A questionnaire survey is conducted to collect people’s rating scores on the visual order.Via regression modeling,our research analyzes the significance of each feature and validates the influences of the features on the visual order.展开更多
With the increasingly stringent requirements for carbon emissions,countries have increased the scale of clean energy use in recent years.As an important new clean energy source,the ratio of wind power in energy utiliz...With the increasingly stringent requirements for carbon emissions,countries have increased the scale of clean energy use in recent years.As an important new clean energy source,the ratio of wind power in energy utilization has been increasing.The horizontal axis wind turbine is the main form of wind power generation,which is subject to random wind loads during operation and is prone to various failures after a long period of operation,resulting in reduced power generation efficiency or even shutdown.In order to ensure stable external power transmission,it is necessary to perform fault diagnosis for wind turbines.However,the traditional time-frequency analysis method is defective.This paper proposes a new LOD-ICA method to realize the resolution of the vibration signals mode mixing problem incorporated the merits of both methods.The LOD-ICA method and the LOD method based on noise-assisted analysis decompose the same signal to produce different signal components.The feasibility of the LOD-ICA method was verified by comparing the correlation coefficients between each of the signal components generated by the two methods and the original signal.In the field of wind turbine fault diagnosis,the LOD-ICA method is employed to the fault characteristics of gearboxes to extract the fault signs of vibration signals,further demonstrated the superiority of the LOD-ICA method in processing vibration signals of rotating machinery.展开更多
Background:In vitro fertilization(IVF)has emerged as a transformative solution for infertility.However,achieving favorable live-birth outcomes remains challenging.Current clinical IVF practices in IVF involve the coll...Background:In vitro fertilization(IVF)has emerged as a transformative solution for infertility.However,achieving favorable live-birth outcomes remains challenging.Current clinical IVF practices in IVF involve the collection of heterogeneous embryo data through diverse methods,including static images and temporal videos.However,traditional embryo selection methods,primarily reliant on visual inspection of morphology,exhibit variability and are contingent on the experience of practitioners.Therefore,an automated system that can evaluate heterogeneous embryo data to predict the final outcomes of live births is highly desirable.Methods:We employed artificial intelligence(AI)for embryo morphological grading,blastocyst embryo selection,aneuploidy prediction,and final live-birth outcome prediction.We developed and validated the AI models using multitask learning for embryo morphological assessment,including pronucleus type on day 1 and the number of blastomeres,asymmetry,and fragmentation of blastomeres on day 3,using 19,201 embryo photographs from 8271 patients.A neural network was trained on embryo and clinical metadata to identify good-quality embryos for implantation on day 3 or day 5,and predict live-birth outcomes.Additionally,a 3D convolutional neural network was trained on 418 time-lapse videos of preimplantation genetic testing(PGT)-based ploidy outcomes for the prediction of aneuploidy and consequent live-birth outcomes.Results:These two approaches enabled us to automatically assess the implantation potential.By combining embryo and maternal metrics in an ensemble AI model,we evaluated live-birth outcomes in a prospective cohort that achieved higher accuracy than experienced embryologists(46.1%vs.30.7%on day 3,55.0%vs.40.7%on day 5).Our results demonstrate the potential for AI-based selection of embryos based on characteristics beyond the observational abilities of human clinicians(area under the curve:0.769,95%confidence interval:0.709-0.820).These findings could potentially provide a noninvasive,high-throughput,and low-cost screening tool to facilitate embryo selection and achieve better outcomes.Conclusions:Our study underscores the AI model’s ability to provide interpretable evidence for clinicians in assisted reproduction,highlighting its potential as a noninvasive,efficient,and cost-effective tool for improved embryo selection and enhanced IVF outcomes.The convergence of cutting-edge technology and reproductive medicine has opened new avenues for addressing infertility challenges and optimizing IVF success rates.展开更多
An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin(H&E) histology, such as frozen section, are time-,resource-, and l...An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin(H&E) histology, such as frozen section, are time-,resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography(D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group(n = 182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma(IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ(DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests(n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%;only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow(approximately 3 min)was significantly shorter than that required for traditional procedures(approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos.31972411,31722048,and 31630068)the Central Public-interest Scientific Institution Basal Research Fund (Grant No.Y2022PT23)+1 种基金the Innovation Program of the Chinese Academy of Agricultural Sciences,and the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture and Rural Affairs,P.R.Chinasupported by NIFA,the Department of Agriculture,via UC-Berkeley,USA。
文摘Brassica oleracea has been developed into many important crops,including cabbage,kale,cauliflower,broccoli and so on.The genome and gene annotation of cabbage(cultivar JZS),a representative morphotype of B.oleracea,has been widely used as a common reference in biological research.Although its genome assembly has been updated twice,the current gene annotation still lacks information on untranslated regions(UTRs)and alternative splicing(AS).Here,we constructed a high-quality gene annotation(JZSv3)using a full-length transcriptome acquired by nanopore sequencing,yielding a total of 59452 genes and 75684 transcripts.Additionally,we re-analyzed the previously reported transcriptome data related to the development of different tissues and cold response using JZSv3 as a reference,and found that 3843 out of 11908 differentially expressed genes(DEGs)underwent AS during the development of different tissues and 309 out of 903 cold-related genes underwent AS in response to cold stress.Meanwhile,we also identified many AS genes,including BolLHCB5 and BolHSP70,that displayed distinct expression patterns within variant transcripts of the same gene,highlighting the importance of JZSv3 as a pivotal reference for AS analysis.Overall,JZSv3 provides a valuable resource for exploring gene function,especially for obtaining a deeper understanding of AS regulation mechanisms.
文摘AIM:To investigate the role of Rho-associated protein kinase (ROCK) inhibitor, Y27632, in mediating the production of extracellular matrix (ECM) components including fibronectin, matrix metallo-proteinase-2 (MMP-2) and type I collagen as induced by connective tissue growth factor(CTGF) or transforming growth factor-β (TGF-β) in a human retinal pigment epithelial cell line, ARPE-19. METHODS:The effect of Y27632 on the CTGF or TGF-β induced phenotype in ARPE-19 cells was measured with immunocytochemistry as the change in F-actin. ARPE-19 cells were treated with CTGF (1, 10, 100ng/mL)and TGF-β (10ng/mL) in serum free media, and analyzed for fibronectin, laminin, and MMP-2 and type I collagen by RT-qPCR and immunocytochemistry. Cells were also pretreated with an ROCK inhibitor, Y27632, to analyze the signaling contributing to ECM production. ·RESULTS:Treatment of ARPE-19 cells in culture with TGF-β or CTGF induced an ECM change from a cobblestone morphology to a more elongated swirl pattern indicating a mesenchymal phenotype. RT-qPCR analysis and different gene expression analysis demonstrated an upregulation in expression of genes associated with cytoskeletal structure and motility. CTGFor TGF-β significantly increased expression of fibronectin mRNA (P =0.006, P =0.003 respectively), laminin mRNA (P =0.006, P =0.005), MMP-2 mRNA (P =0.006, P =0.001), COL1A1 mRNA (P =0.001, P =0.001), COL1A2 mRNA (P = 0.001, P =0.001). Preincubation of ARPE-19 with Y27632 (10mmol/L) significantly prevented CTGF or TGF-β induced fibronectin (P=0.005, P=0.003 respectively), MMP-2 (P = 0.003, P =0.002), COL1A1 (P =0.006, P =0.003), and COL1A2 (P =0.006, P =0.004) gene expression, but not laminin (P =0.375, P =0.516). CONCLUSION:Our study demonstrated that both TGF-β and CTGF upregulate the expression of ECM components including fibronectin, laminin, MMP-2 and type I collagen by activating the RhoA/ROCK signaling pathway. During this process, ARPE-19 cells were shown to change from an epithelial to a mesenchymal phenotype in vitro. Y27632, a ROCK inhibitor, inhibited the transcription of fibronectin, MMP-2 and type I collagen, but not laminin. The data from our work suggest a role for CTGF as a profibrotic mediator. Inhibiting the RhoA/ROCK pathway represents a potential target to prevent the fibrosis of retinal pigment epithelial (RPE) cells. This might lead to a novel therapeutic approach to preventing the onset of early proliferative vitreoretinopathy(PVR).
基金supported by the National Social Science Fund Art Project(No.17BG134)Natural Science Foundation of the Beijing Municipal Education Committee(No.KM201710050001)+1 种基金National NSFC project(Grant number 61772463)National NSFC project(Grant number 61572348).
文摘Computational aesthetics,which bridges science and art,is emerging as a new interdisciplinary field.This paper concentrates on two main aspects of computational aesthetics:aesthetic measurement and quantification,generative art,and then proposes a design generation framework.On aesthetic measurement and quantification,we review different types of features used in measurement,the currently used evaluation methods,and their applications.On generative art,we focus on both fractal art and abstract paintings modeled on well-known artists’styles.In general,computational aesthetics exploits computational methods for aesthetic expressions.In other words,it enables computer to appraise beauty and ugliness and also automatically generate aesthetic images.Computational aesthetics has been widely applied to many areas,such as photography,fine art,Chinese hand-writing,web design,graphic design,and industrial design.We finally propose a design generation methodology,utilizing techniques from both aesthetic measurements and generative art.
基金supported by the National Key Research and Development Program of China (Grant No. 2016YFD0100307 and 2018YFD1000800)the National Natural Science Foundation of China (Grant No. 31722048 and 31630068)+1 种基金the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciencesthe Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, China
文摘Self-incompatibility(SI),which has recurred during the evolution of plants,is one of the most important cross-pollination mating systems.Three S-loci have been reported in Brassicaceae,namely,Arabidopsis lyrata(Al),Brassica(Br),and Leavenworthia alabamica(La)S-loci.Here,through multi-genomic comparative analysis of 20 species,we revealed that the most ancient S-locus was formed prior to the divergence of Brassicaceae lineage I and II.Itwas retained and inherited by Arabidopsis,as the Al S-locus in Brassicaceae lineage I.Furthermore,we found that the Br S-locus,which has been widely used in the breeding of Brassica crops to generate hybrid seeds,was formed through segmental translocation(ST)in the hexaploid ancestor of Brassica in Brassicaceae lineage II.The Br S-locus was evolved through a ST from one of the triplicated ancestral S-locus paralogs in the Brassica hexaploidy ancestor,while the other two S-locus paralogs were lost.Together with the previous discovery that the La S-locus was formed through a secondary origin in Brassicaceae lineage I,we conclude the monophyletic origin of Al and Br S-loci and clarify the evolutionary route of S-loci in the Brassicaceae family.Our findings will contribute to evolutionary studies and breeding applications of the S-locus in Brassicaceae.
文摘Cancer is a collection of complex diseases in which cell proliferation and apoptosis are dysregulated due to the acquisition of genetic changes in cancer cells.These genetic changes,combined with the interrelated physiologic adaptations of neo-angiogenesis,recruitment of stromal support tissues,and suppression of immune recognition,are measurable characteristics in tumor gene expression profiles and biochemical pathways.These measures can lead to identification of disease drivers and,ultimately,can be used to assign therapy.With advances in RNA sequencing technologies,the ability to simultaneously measure all genetic and gene expression changes with a single technology is now possible.The ability to create a comprehensive catalog of genotypic and phenotypic changes in a collection of histologically similar but otherwise distinct tumors should allow for a more precise positioning of existing targeted therapies and identification of new targets for intervention.
基金supported by the National Natural Science Foundation of China (31871709)the Construction of Support System for National Agricultural Green Development Advance Region of Qushui County,Tibet,China (QYXTZX-LS2022-01)+1 种基金the Key Project of Beijing Natural Science Foundation (6151002)the Startup Grants of Henan Agricultural University (30501038,30500823)。
文摘Maize growth and development are regulated by light quality,intensity and photoperiod.Cryptochromes are blue/ultraviolet-A light receptors involved in stem elongation,shade avoidance,and photoperiodic flowering.To investigate the function of cryptochrome 1(CRY1) in maize,where it is encoded by Zm CRY1,we obtained two Zm CRY1a genes(Zm CRY1a1 and Zm CRY1a2),both of which share the highest similarity with other gramineous plants,in particular rice CRY1a by phylogenetic analysis.In Arabidopsis,overexpression of Zm CRY1a genes promoted seedling de-etiolation under blue and white light,resulting in dwarfing of mature plants.In seedlings of the maize inbred line Zong 31(Zm CRY1aOE),overexpression of Zm CRY1a genes caused a reduction in the mesocotyl and first leaf sheath lengths due to down-regulation of genes influencing cell elongation.In mature transgenic maize plants,plant height,ear height,and internode length decreased in response to overexpression of Zm CRY1a genes.Expression of Zm CRY1a were insensitive to low blue light(LBL)-induced shade avoidance syndrome(SAS) in Arabidopsis and maize.This prompted us to investigate the regulatory role of the gibberellin and auxin metabolic pathways in the response of Zm CRY1a genes to LBL treatment.We confirmed a link between Zm CRY1a expression and hormonal influence on the growth and development of maize under LBL-induced SAS.These results reveal that Zm CRY1a has a relatively conservative function in regulating maize photomorphogenesis and may guide new strategies for breeding high density-tolerant maize cultivars.
基金Key-Area Research and Development Program of Guangdong Province(Nos.2020B010172001,2020B010174004)GDAS’Project of Science and Technology Development(No.2018GDASCX-0112)+3 种基金Science and Technology Program of Guangzhou(No.2019050001)National Key Research and Development Program of China(No.2017YFB0404100)National Natural Science Foundation of China(Grant No.11804103)Guangdong Natural Science Foundation for Distinguished Young Scholars(Grant No.2018B030306048).
文摘High-electron-mobility transistors(HEMTs)are a promising device in the field of radio frequency and wireless communication.However,to unlock the full potential of HEMTs,the fabrication of large-size flexible HEMTs is required.Herein,a large-sized(>2 cm^(2))of AlGaN/AlN/GaN heterostructure-based HEMTs were successfully stripped from sapphire substrate to a flexible polyethylene terephthalate substrate by an electrochemical lift-off technique.The piezotronic effect was then induced to optimize the electron transport performance by modulating/tuning the physical properties of two-dimensional electron gas(2DEG)and phonons.The saturation current of the flexible HEMT is enhanced by 3.15%under the 0.547%tensile condition,and the thermal degradation of the HEMT was also obviously suppressed under compressive straining.The corresponding electrical performance changes and energy diagrams systematically illustrate the intrinsic mechanism.This work not only provides in-depth understanding of the piezotronic effect in tuning 2DEG and phonon properties in GaN HEMTs,but also demonstrates a low-cost method to optimize its electronic and thermal properties.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61874161 and 11474105)the Science and Technology Program of Guangdong Province,China(Grant No.2017B010127001)+1 种基金the Science and Technology of Shenzhen City,China(Grant No.GJHZ20180416164721073)the Education Department Funding of Guangdong Province,China(Grant No.2017KZDXM022)
文摘The conventional stationary Al content Al GaN electron blocking layer(EBL) in ultraviolet light-emitting diode(UV LED) is optimized by employing a linearly graded Al Ga N inserting layer which is 2.0 nm Al_(0.3) Ga_(0.7) N/5.0 nm Alx Ga_(1-x) N/8.0 nm Al_(0.3) Ga_(0.7) N with decreasing value of x. The results indicate that the internal quantum efficiency is significantly improved and the efficiency droop is mitigated by using the proposed structure. These improvements are attributed to the increase of the effective barrier height for electrons and the reduction of the effective barrier height for holes,which result in an increased hole injection efficiency and a decreased electron leakage into the p-type region. In addition,the linearly graded AlGaN inserting layer can generate more holes in EBL due to the polarization-induced hole doping and a tunneling effect probably occurs to enhance the hole transportation to the active regions, which will be beneficial to the radiative recombination.
基金supported by the National Natural Science Foundation of China (Grant No. 42105093 and 41975018)the China Postdoctoral Science Foundation (Grant No. 2020M670420)the Special Research Assistant Project。
文摘Turbulence in the nocturnal boundary layer(NBL)is still not well characterized,especially over complex underlying surfaces.Herein,gradient tower data and eddy covariance data collected by the Beijing 325-m tower were used to better understand the differentiating characteristics of turbulence regimes and vertical turbulence structure of urban the NBL.As for heights above the urban canopy layer(UCL),the relationship between turbulence velocity scale(VTKE)and wind speed(V)was consistent with the“HOckey-Stick”(HOST)theory proposed for a relatively flat area.Four regimes have been identified according to urban nocturnal stable boundary layer.Regime 1 occurs where local shear plays a leading role for weak turbulence under the constraint that the wind speed V<VT(threshold wind speed).Regime 2 is determined by the existence of strong turbulence that occurs when V>VT and is mainly driven by bulk shear.Regime 3 is identified by the existence of moderate turbulence when upside-down turbulence sporadic bursts occur in the presence of otherwise weak turbulence.Regime 4 is identified as buoyancy turbulence,when V>VT,and the turbulence regime is affected by a combination of local wind shear,bulk shear and buoyancy turbulence.The turbulence activities demonstrated a weak thermal stratification dependency in regime 1,for which within the UCL,the turbulence intensity was strongly affected by local wind shear when V<VT.This study further showed typical examples of different stable boundary layers and the variations between turbulence regimes by analyzing the evolution of wind vectors.Partly because of the influence of large-scale motions,the power spectral density of vertical velocity for upsidedown structure showed an increase at low frequencies.The upside-down structures were also characterized by the highest frequency of the stable stratifications in the higher layer.
基金supported by the National Natural Science Foundation of China (Grant No.51009096)the Research Fund of Nanjing Hydraulic Research Institute (Grant No.Y210003)
文摘Bed structures in many mountain rivers provide additional resistance to the flow. A field experiment was conducted on debris flow deposits in the valley of the Jiangjiagou Ravine, a tributary of the Yangtze River in southwestern China, to study the evolution and distribution of bed structures and their relationship with environmental conditions. Water and sediment from the Jiangjiagou main stream were diverted into the experimental channel. Several hydrological schemes were adopted to scour the channel until equilibrium was reached. During this process the evolutions of bed structures and channel configuration were investigated. The results indicate that stronger bed structures mean greater stream power consumption, greater resistance, and greater slope in a certain section when rivers are in dynamic equilibrium. Thus, to some extent the longitudinal profiles of channels can be determined by the distribution of bed structures. In natural cases, the strength and evolution of bed structures are under the influence of environmental conditions such as discharge and bed-load transportation rate. That is, given the same conditions, the same bed structure distribution and longitudinal profile can be predicted.
基金supported by the State Key Laboratory of North China Crop Improvement and Regulation(NCCIR2021ZZ-14)the Natural Science Foundation of Hebei Province(C2019204246,C2019204141)+2 种基金the Central Government Guides Local Science and Technology Development Projects(216Z6501G,216Z6502G)the Research Project of Basic Scientific Research Business Fees in Provincial Universities of Hebei Province(KY2021043,KY2021044)the China Agriculture Research System(CARS-02)。
文摘The jasmonic acid(JA)signaling pathway is involved in plant growth,development,and response to abiotic or biotic stresses.MYC2,a bHLH transcription factor,is a regulatory hub in the pathway.The function of ZmMYC7,a putative MYC2 ortholog,in jasmonate-signaled defense responses of maize has not been reported.In this study,we found that ZmMYC7 possesses JID,TAD,bHLH and Zip domains and essential characteristics of transcription factors:a nuclear location and transactivation activity.The ZmMYC7mutants showed markedly increased sensitivity to Fusarium graminearum and Setosphaeria turcica.The expression levels of the defense-associated genes ZmPR1,ZmPR2,ZmPR3,ZmPR5,ZmPR6,and ZmPR7 in response to F.graminearum infection were downregulated in ZmMYC7 mutants,while ZmPR4 and ZmPR10 were up-regulated.ZmMYC7 interacted with members of the ZmJAZ family,including ZmJAZ8,ZmJAZ11,and ZmJAZ12.ZmMYC7 physically interacted with G-box cis-elements in the ZmERF147 promoter in vitro and transcriptional activation of ZmERF147 by ZmMYC7 was inhibited by ZmJAZ11 and ZmJAZ12.ZmERF147 mutants were more susceptible to F.graminearum infection than inbred line B73with concomitant down-regulation of all defense-associated ZmPRs except ZmPR4.These findings indicate that ZmMYC7 functions in maize resistance to F.graminearum and sheds light on maize defense responses to pathogenic fungi via the JA signaling pathway.
文摘Visual order is one of the key factors influencing the aesthetic judgment of artworks.This paper reports the results of evaluating the influence of extracted features on visual order in Chinese ink paintings,using a regression model.We use nine contemporary artists’paintings as examples and extract features related to the visual order of their paintings.A questionnaire survey is conducted to collect people’s rating scores on the visual order.Via regression modeling,our research analyzes the significance of each feature and validates the influences of the features on the visual order.
文摘With the increasingly stringent requirements for carbon emissions,countries have increased the scale of clean energy use in recent years.As an important new clean energy source,the ratio of wind power in energy utilization has been increasing.The horizontal axis wind turbine is the main form of wind power generation,which is subject to random wind loads during operation and is prone to various failures after a long period of operation,resulting in reduced power generation efficiency or even shutdown.In order to ensure stable external power transmission,it is necessary to perform fault diagnosis for wind turbines.However,the traditional time-frequency analysis method is defective.This paper proposes a new LOD-ICA method to realize the resolution of the vibration signals mode mixing problem incorporated the merits of both methods.The LOD-ICA method and the LOD method based on noise-assisted analysis decompose the same signal to produce different signal components.The feasibility of the LOD-ICA method was verified by comparing the correlation coefficients between each of the signal components generated by the two methods and the original signal.In the field of wind turbine fault diagnosis,the LOD-ICA method is employed to the fault characteristics of gearboxes to extract the fault signs of vibration signals,further demonstrated the superiority of the LOD-ICA method in processing vibration signals of rotating machinery.
文摘Background:In vitro fertilization(IVF)has emerged as a transformative solution for infertility.However,achieving favorable live-birth outcomes remains challenging.Current clinical IVF practices in IVF involve the collection of heterogeneous embryo data through diverse methods,including static images and temporal videos.However,traditional embryo selection methods,primarily reliant on visual inspection of morphology,exhibit variability and are contingent on the experience of practitioners.Therefore,an automated system that can evaluate heterogeneous embryo data to predict the final outcomes of live births is highly desirable.Methods:We employed artificial intelligence(AI)for embryo morphological grading,blastocyst embryo selection,aneuploidy prediction,and final live-birth outcome prediction.We developed and validated the AI models using multitask learning for embryo morphological assessment,including pronucleus type on day 1 and the number of blastomeres,asymmetry,and fragmentation of blastomeres on day 3,using 19,201 embryo photographs from 8271 patients.A neural network was trained on embryo and clinical metadata to identify good-quality embryos for implantation on day 3 or day 5,and predict live-birth outcomes.Additionally,a 3D convolutional neural network was trained on 418 time-lapse videos of preimplantation genetic testing(PGT)-based ploidy outcomes for the prediction of aneuploidy and consequent live-birth outcomes.Results:These two approaches enabled us to automatically assess the implantation potential.By combining embryo and maternal metrics in an ensemble AI model,we evaluated live-birth outcomes in a prospective cohort that achieved higher accuracy than experienced embryologists(46.1%vs.30.7%on day 3,55.0%vs.40.7%on day 5).Our results demonstrate the potential for AI-based selection of embryos based on characteristics beyond the observational abilities of human clinicians(area under the curve:0.769,95%confidence interval:0.709-0.820).These findings could potentially provide a noninvasive,high-throughput,and low-cost screening tool to facilitate embryo selection and achieve better outcomes.Conclusions:Our study underscores the AI model’s ability to provide interpretable evidence for clinicians in assisted reproduction,highlighting its potential as a noninvasive,efficient,and cost-effective tool for improved embryo selection and enhanced IVF outcomes.The convergence of cutting-edge technology and reproductive medicine has opened new avenues for addressing infertility challenges and optimizing IVF success rates.
基金supported by the Capital’s Funds for Health Improvement and Research (CHF 2020-2Z-40812)Beijing Natural Science Foundation (7242281)+4 种基金Beijing Municipal Science and Technology Project (Z201100005520081)the National Key Research and Development Program of China (2016YFC0901300)the National Natural Science Foundation of China (62076015)Macao Science and Technology Development Fund,Macao,China (0070/2020/A2,0003/2021/AKP)Macao Young Scholars Program (AM2023024)。
文摘An intraoperative diagnosis is critical for precise cancer surgery. However, traditional intraoperative assessments based on hematoxylin and eosin(H&E) histology, such as frozen section, are time-,resource-, and labor-intensive, and involve specimen-consuming concerns. Here, we report a near-real-time automated cancer diagnosis workflow for breast cancer that combines dynamic full-field optical coherence tomography(D-FFOCT), a label-free optical imaging method, and deep learning for bedside tumor diagnosis during surgery. To classify the benign and malignant breast tissues, we conducted a prospective cohort trial. In the modeling group(n = 182), D-FFOCT images were captured from April 26 to June 20, 2018, encompassing 48 benign lesions, 114 invasive ductal carcinoma(IDC), 10 invasive lobular carcinoma, 4 ductal carcinoma in situ(DCIS), and 6 rare tumors. Deep learning model was built up and fine-tuned in 10,357 D-FFOCT patches. Subsequently, from June 22 to August 17, 2018, independent tests(n = 42) were conducted on 10 benign lesions, 29 IDC, 1 DCIS, and 2 rare tumors. The model yielded excellent performance, with an accuracy of 97.62%, sensitivity of 96.88% and specificity of 100%;only one IDC was misclassified. Meanwhile, the acquisition of the D-FFOCT images was non-destructive and did not require any tissue preparation or staining procedures. In the simulated intraoperative margin evaluation procedure, the time required for our novel workflow(approximately 3 min)was significantly shorter than that required for traditional procedures(approximately 30 min). These findings indicate that the combination of D-FFOCT and deep learning algorithms can streamline intraoperative cancer diagnosis independently of traditional pathology laboratory procedures.