In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (S...In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.展开更多
Sustainable thermoelectric materials open an avenue of emission-free as well as fast-responding recycling of energy in terms of heat to electricity.The efficiency(η)of such conversion is primarily guided by the dimen...Sustainable thermoelectric materials open an avenue of emission-free as well as fast-responding recycling of energy in terms of heat to electricity.The efficiency(η)of such conversion is primarily guided by the dimensionless thermoelectric figure of merit(zT),which depends on parameters like Seebeck coefficient(S).展开更多
With years of development, SnTe as a homologue of PbTe has shown great potentialfor thermoelectric applications in p-type conduction, and the most successfulstrategy is typified by alloying for maximizing the valence ...With years of development, SnTe as a homologue of PbTe has shown great potentialfor thermoelectric applications in p-type conduction, and the most successfulstrategy is typified by alloying for maximizing the valence band degeneracy.Among the known alloy agents, MnTe has been found to be one of the most effectiveenabling a band convergence for an enhancement in electronic performance ofSnTe, yet its solubility of only ~15 at% unfortunately prevents a full optimizationin the valence band structure. This work reveals that additional PbTe alloying notonly promotes the MnTe solubility to locate the optimal valence band structure butalso increases the overall substitutional defects in the material for a substantialreduction in lattice thermal conductivity. In addition, PbTe alloying simultaneouslyoptimizes the carrier concentration due to the cation size effect. These features allenabled by such a solute manipulation synergistically lead to a very high thermoelectricfigure of merit, zT of ~1.5 in SnTe with a 20 at% MnTe and a 30 at% PbTealloying (Sn0.5Mn0.2Pb0.3Te), demonstrating the effectiveness of solute manipulationfor advancing SnTe and similar thermoelectrics.展开更多
文摘In this article, we report the results of our detailed investigations of the growth kinetics of zero-dimensional nanocrystals as well as one-dimensional nanorods by the combined use of small angel X-ray scattering (SAXS), transmission electron microscopy (TEM) along with other physical techniques. The study includes growth kinetics of gold nanocrystals formed by the reduction of HAuCl4 by tetrakis(hydroxymethyl) phosphonium chloride in aqueous solution, of CdSe nanocrystals formed by the reaction of cadmium stearate and selenium under solvothermal conditions, and of ZnO nanorods formed by the reaction of zinc acetate with sodium hydroxide under solvothermal conditions in the absence and presence of capping agents. The growth of gold nanocrystals does not follow the diffusion-limited Ostwald ripening, and instead follows a Sigmoidal rate curve. The heat change associated with the growth determined by isothermal titration calorimetry is about 10 kcal·mol^-1 per I nm increase in the diameter of the nanocrystals. In the case of CdSe nanocrystals also, the growth mechanism deviates from diffusion-limited growth and follows a combined model containing both diffusion and surface reaction terms. Our study of the growth kinetics of uncapped and poly(vinyl pyrollidone) (PVP)-capped ZnO nanorods has yielded interesting insights. We observe small nanocrystals next to the ZnO nanorods after a lapse of time in addition to periodic focusing and defocusing of the width of the length distribution. These observations lend support to the diffusion-limited growth model for the growth of uncapped ZnO nanorods. Accordingly, the time dependence on the length of uncapped nanorods follows the L3 law as required for diffusion-limited Ostwald ripening. The PVP-capped nanorods, however, show a time dependence, which is best described by a combination of diffusion (L^3) and surface reaction (L^2) terms.
文摘Sustainable thermoelectric materials open an avenue of emission-free as well as fast-responding recycling of energy in terms of heat to electricity.The efficiency(η)of such conversion is primarily guided by the dimensionless thermoelectric figure of merit(zT),which depends on parameters like Seebeck coefficient(S).
基金This work is supported by the National Key Research and Development Program of China(2018YFB0703600)the National Natural Science Foundation of China(51861145305[the BRICS project]and 51772215)+3 种基金Fundamental Research Funds for Science and Technology Innovation Plan of Shanghai(18JC1414600)the Fok Ying Tung Education Foundation(20170072210001)“Shu Guang”Project Supported by Shanghai Municipal Education Commission and Shanghai Education Development Foundation,Shanghai Natural Science Foundation(19ZR1459900)the Fundamental Research Funds for the Central Universities.A.B.acknowledges support by Russian Foundation for Basic Research under grant 18-52-80005(BRICS).
文摘With years of development, SnTe as a homologue of PbTe has shown great potentialfor thermoelectric applications in p-type conduction, and the most successfulstrategy is typified by alloying for maximizing the valence band degeneracy.Among the known alloy agents, MnTe has been found to be one of the most effectiveenabling a band convergence for an enhancement in electronic performance ofSnTe, yet its solubility of only ~15 at% unfortunately prevents a full optimizationin the valence band structure. This work reveals that additional PbTe alloying notonly promotes the MnTe solubility to locate the optimal valence band structure butalso increases the overall substitutional defects in the material for a substantialreduction in lattice thermal conductivity. In addition, PbTe alloying simultaneouslyoptimizes the carrier concentration due to the cation size effect. These features allenabled by such a solute manipulation synergistically lead to a very high thermoelectricfigure of merit, zT of ~1.5 in SnTe with a 20 at% MnTe and a 30 at% PbTealloying (Sn0.5Mn0.2Pb0.3Te), demonstrating the effectiveness of solute manipulationfor advancing SnTe and similar thermoelectrics.