期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A deep learning fusion model for accurate classification of brain tumours in Magnetic Resonance images
1
作者 Nechirvan Asaad Zebari Chira Nadheef Mohammed +8 位作者 Dilovan Asaad Zebari Mazin Abed Mohammed Diyar Qader Zeebaree Haydar Abdulameer Marhoon karrar hameed abdulkareem Seifedine Kadry Wattana Viriyasitavat Jan Nedoma Radek Martinek 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期790-804,共15页
Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods... Detecting brain tumours is complex due to the natural variation in their location, shape, and intensity in images. While having accurate detection and segmentation of brain tumours would be beneficial, current methods still need to solve this problem despite the numerous available approaches. Precise analysis of Magnetic Resonance Imaging (MRI) is crucial for detecting, segmenting, and classifying brain tumours in medical diagnostics. Magnetic Resonance Imaging is a vital component in medical diagnosis, and it requires precise, efficient, careful, efficient, and reliable image analysis techniques. The authors developed a Deep Learning (DL) fusion model to classify brain tumours reliably. Deep Learning models require large amounts of training data to achieve good results, so the researchers utilised data augmentation techniques to increase the dataset size for training models. VGG16, ResNet50, and convolutional deep belief networks networks extracted deep features from MRI images. Softmax was used as the classifier, and the training set was supplemented with intentionally created MRI images of brain tumours in addition to the genuine ones. The features of two DL models were combined in the proposed model to generate a fusion model, which significantly increased classification accuracy. An openly accessible dataset from the internet was used to test the model's performance, and the experimental results showed that the proposed fusion model achieved a classification accuracy of 98.98%. Finally, the results were compared with existing methods, and the proposed model outperformed them significantly. 展开更多
关键词 brain tumour deep learning feature fusion model MRI images multi‐classification
下载PDF
A Comprehensive Investigation of Machine Learning Feature Extraction and ClassificationMethods for Automated Diagnosis of COVID-19 Based on X-ray Images 被引量:7
2
作者 Mazin Abed Mohammed karrar hameed abdulkareem +6 位作者 Begonya Garcia-Zapirain Salama A.Mostafa Mashael S.Maashi Alaa S.Al-Waisy Mohammed Ahmed Subhi Ammar Awad Mutlag Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第3期3289-3310,共22页
The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,whi... The quick spread of the CoronavirusDisease(COVID-19)infection around the world considered a real danger for global health.The biological structure and symptoms of COVID-19 are similar to other viral chest maladies,which makes it challenging and a big issue to improve approaches for efficient identification of COVID-19 disease.In this study,an automatic prediction of COVID-19 identification is proposed to automatically discriminate between healthy and COVID-19 infected subjects in X-ray images using two successful moderns are traditional machine learning methods(e.g.,artificial neural network(ANN),support vector machine(SVM),linear kernel and radial basis function(RBF),k-nearest neighbor(k-NN),Decision Tree(DT),andCN2 rule inducer techniques)and deep learningmodels(e.g.,MobileNets V2,ResNet50,GoogleNet,DarkNet andXception).A largeX-ray dataset has been created and developed,namely the COVID-19 vs.Normal(400 healthy cases,and 400 COVID cases).To the best of our knowledge,it is currently the largest publicly accessible COVID-19 dataset with the largest number of X-ray images of confirmed COVID-19 infection cases.Based on the results obtained from the experiments,it can be concluded that all the models performed well,deep learning models had achieved the optimum accuracy of 98.8%in ResNet50 model.In comparison,in traditional machine learning techniques, the SVM demonstrated the best result for an accuracy of 95% and RBFaccuracy 94% for the prediction of coronavirus disease 2019. 展开更多
关键词 Coronavirus disease COVID-19 diagnosis machine learning convolutional neural networks resnet50 artificial neural network support vector machine X-ray images feature transfer learning
下载PDF
A New Multi-Agent Feature Wrapper Machine Learning Approach for Heart Disease Diagnosis 被引量:5
3
作者 Mohamed Elhoseny Mazin Abed Mohammed +5 位作者 Salama A.Mostafa karrar hameed abdulkareem Mashael S.Maashi Begonya Garcia-Zapirain Ammar Awad Mutlag Marwah Suliman Maashi 《Computers, Materials & Continua》 SCIE EI 2021年第4期51-71,共21页
Heart disease(HD)is a serious widespread life-threatening disease.The heart of patients with HD fails to pump sufcient amounts of blood to the entire body.Diagnosing the occurrence of HD early and efciently may preven... Heart disease(HD)is a serious widespread life-threatening disease.The heart of patients with HD fails to pump sufcient amounts of blood to the entire body.Diagnosing the occurrence of HD early and efciently may prevent the manifestation of the debilitating effects of this disease and aid in its effective treatment.Classical methods for diagnosing HD are sometimes unreliable and insufcient in analyzing the related symptoms.As an alternative,noninvasive medical procedures based on machine learning(ML)methods provide reliable HD diagnosis and efcient prediction of HD conditions.However,the existing models of automated ML-based HD diagnostic methods cannot satisfy clinical evaluation criteria because of their inability to recognize anomalies in extracted symptoms represented as classication features from patients with HD.In this study,we propose an automated heart disease diagnosis(AHDD)system that integrates a binary convolutional neural network(CNN)with a new multi-agent feature wrapper(MAFW)model.The MAFW model consists of four software agents that operate a genetic algorithm(GA),a support vector machine(SVM),and Naïve Bayes(NB).The agents instruct the GA to perform a global search on HD features and adjust the weights of SVM and BN during initial classication.A nal tuning to CNN is then performed to ensure that the best set of features are included in HD identication.The CNN consists of ve layers that categorize patients as healthy or with HD according to the analysis of optimized HD features.We evaluate the classication performance of the proposed AHDD system via 12 common ML techniques and conventional CNN models by using across-validation technique and by assessing six evaluation criteria.The AHDD system achieves the highest accuracy of 90.1%,whereas the other ML and conventional CNN models attain only 72.3%–83.8%accuracy on average.Therefore,the AHDD system proposed herein has the highest capability to identify patients with HD.This system can be used by medical practitioners to diagnose HD efciently。 展开更多
关键词 Heart disease machine learning multi-agent feature wrapper model heart disease diagnosis HD cleveland datasets convolutional neural network
下载PDF
COVID-DeepNet: Hybrid Multimodal Deep Learning System for Improving COVID-19 Pneumonia Detection in Chest X-ray Images 被引量:3
4
作者 A.S.Al-Waisy Mazin Abed Mohammed +6 位作者 Shumoos Al-Fahdawi M.S.Maashi Begonya Garcia-Zapirain karrar hameed abdulkareem S.A.Mostafa Nallapaneni Manoj Kumar Dac-Nhuong Le 《Computers, Materials & Continua》 SCIE EI 2021年第5期2409-2429,共21页
Coronavirus(COVID-19)epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide.This newly recognized virus is highly transmissible,and no clinically approved vaccine or antiviral medici... Coronavirus(COVID-19)epidemic outbreak has devastating effects on daily lives and healthcare systems worldwide.This newly recognized virus is highly transmissible,and no clinically approved vaccine or antiviral medicine is currently available.Early diagnosis of infected patients through effective screening is needed to control the rapid spread of this virus.Chest radiography imaging is an effective diagnosis tool for COVID-19 virus and followup.Here,a novel hybrid multimodal deep learning system for identifying COVID-19 virus in chest X-ray(CX-R)images is developed and termed as the COVID-DeepNet system to aid expert radiologists in rapid and accurate image interpretation.First,Contrast-Limited Adaptive Histogram Equalization(CLAHE)and Butterworth bandpass filter were applied to enhance the contrast and eliminate the noise in CX-R images,respectively.Results from two different deep learning approaches based on the incorporation of a deep belief network and a convolutional deep belief network trained from scratch using a large-scale dataset were then fused.Parallel architecture,which provides radiologists a high degree of confidence to distinguish healthy and COVID-19 infected people,was considered.The proposed COVID-DeepNet system can correctly and accurately diagnose patients with COVID-19 with a detection accuracy rate of 99.93%,sensitivity of 99.90%,specificity of 100%,precision of 100%,F1-score of 99.93%,MSE of 0.021%,and RMSE of 0.016%in a large-scale dataset.This system shows efficiency and accuracy and can be used in a real clinical center for the early diagnosis of COVID-19 virus and treatment follow-up with less than 3 s per image to make the final decision. 展开更多
关键词 Coronavirus epidemic deep learning deep belief network convolutional deep belief network chest radiography imaging
下载PDF
Parametric Methods for the Regional Assessment of Cardiac Wall Motion Abnormalities: Comparison Study 被引量:1
5
作者 Narjes Benameur Mazin Abed Mohammed +4 位作者 Ramzi Mahmoudi Younes Arous Begonya Garcia-Zapirain karrar hameed abdulkareem Mohamed Hedi Bedoui 《Computers, Materials & Continua》 SCIE EI 2021年第10期1233-1252,共20页
Left ventricular(LV)dysfunction is mainly assessed by global contractile indices such as ejection fraction and LV Volumes in cardiac MRI.While these indices give information about the presence or not of LV alteration,... Left ventricular(LV)dysfunction is mainly assessed by global contractile indices such as ejection fraction and LV Volumes in cardiac MRI.While these indices give information about the presence or not of LV alteration,they are not able to identify the location and the size of such alteration.The aim of this study is to compare the performance of three parametric imaging techniques used in cardiac MRI for the regional quantification of cardiac dysfunction.The proposed approaches were evaluated on 20 patients with myocardial infarction and 20 subjects with normal function.Three parametric images approaches:covariance analysis,parametric images based on Hilbert transform and those based on the monogenic signal were evaluated using cine-MRI frames acquired in three planes of views.The results show that parametric images generated from the monogenic signal were superior in term of sensitivity(89.69%),specificity(86.51%)and accuracy(89.06%)to those based on covariance analysis and Hilbert transform in the detection of contractile dysfunction related to myocardial infarction.Therefore,the parametric image based on the monogenic signal is likely to provide additional regional indices about LV dysfunction and it may be used in clinical practice as a tool for the analysis of the myocardial alterations. 展开更多
关键词 Covariance analysis cardiac MRI monogenic signal ASSESSMENT Hilbert transform
下载PDF
Statistical Medical Pattern Recognition for Body Composition Data Using Bioelectrical Impedance Analyzer
6
作者 Florin Valentin Leuciuc Maria Daniela Craciun +3 位作者 Iulian Stefan Holubiac Mazin Abed Mohammed karrar hameed abdulkareem Gheorghe Pricop 《Computers, Materials & Continua》 SCIE EI 2021年第5期2601-2617,共17页
Identifying patterns,recognition systems,prediction methods,and detection methods is a major challenge in solving different medical issues.Few categories of devices for personal and professional assessment of body com... Identifying patterns,recognition systems,prediction methods,and detection methods is a major challenge in solving different medical issues.Few categories of devices for personal and professional assessment of body composition are available.Bioelectrical impedance analyzer is a simple,safe,affordable,mobile,non-invasive,and less expensive alternative device for body composition assessment.Identifying the body composition pattern of different groups with varying age and gender is a major challenge in defining an optimal level because of the body shape,body mass,energy requirements,physical fitness,health status,and metabolic profile.Thus,this research aims to identify the statistical medical pattern recognition of body composition data by using a bioelectrical impedance analyzer.In previous studies,a pattern was identified for four indicators that concern body composition(e.g.,body mass index(BMI),body fat,muscle mass,and total body water).The novelty of our study is the fact that we identified a recognition pattern by using medical statistical methods for a body composition that contains seven indicators(e.g.,body fat,visceral fat,BMI,muscle mass,skeletal muscle mass,sarcopenic index,and total body water).The youth that exhibited the body composition pattern identified in our study could be considered healthy.Every deviation of one or more parameters outside the margins of the pattern for body composition could be associated with health issues,and more medical investigations would be needed for a diagnosis.BIA is considered a valid and reliable device to assess body composition along with medical statistical methods to identify a pattern for body composition according to the age,gender,and other relevant parameters. 展开更多
关键词 Statistical method pattern recognition body composition ASSESSMENT
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部