A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes ...A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.展开更多
Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers...Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics.This work demonstrates that a remanent polarization(P_(r))value of>5μC/cm^(2)can be obtained in asdeposited Hf_(0.5)Zr_(0.5)O_(2)(HZO)films that are fabricated by thermal atomic layer deposition(TALD)under low temperature of 250℃.The ferroelectric orthorhombic phase(o-phase)in the as-deposited HZO films is detected by scanning transmission electron microscopy(STEM).This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments.展开更多
For acoustic detection of internal waves, the core issue is to obtain the temporal and spatial distribution of the sound speed profile(SSP). In the inversion process, the SSP is usually expressed by a few parameters t...For acoustic detection of internal waves, the core issue is to obtain the temporal and spatial distribution of the sound speed profile(SSP). In the inversion process, the SSP is usually expressed by a few parameters through expansion. However, information about internal waves may sometimes be hard to read directly from the inversion results. The aim of this paper is to characterize the internal waves directly though expansion coefficients. By deducing the dynamic equations of the internal waves, an orthogonal basis called the hydrodynamic normal modes(HNMs) can be extracted from a certain number of SSP samples. Unlike the existing widely used empirical orthogonal functions(EOFs), the HNMs have a more explicit physical meaning that is directly related to internal wave activity. The HNMs are then used to expand the SSP time series, and the expansion coefficients are derived.Eventually, information about internal waves can be read directly from the time derivative of the expansion coefficients of the first two modes. In this study, this method is applied to thermistor string profiles from the northern shelf of the South China Sea, where the SSP shows evident spatial and temporal variations due to internal waves. The results show that the SSP can be described approximately by the first two modes with adequate precision. The special oscillation structure of the time derivative of the expansion coefficients can be used to detect internal solitary waves. The expansion coefficients can also give information on internal solitary wave amplitude and width. According to theoretical and experimental analysis, it can be concluded that the internal waves monitoring method introduced in this paper is effective. The HNMs method is simple to apply and depends less on sample data than EOFs. It could be used as an efficient alternative to EOFs to expand the use of the SSP in highly variable areas, where internal waves are intensive.展开更多
In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM), a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and wate...In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM), a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and water exchange capability in Tangdao Bay, in China. The severe pollution in the bay was numerically simulated by releasing and tracking particles inside it. The simulation results demonstrate that the water exchange capability in the bay is very low. Once the bay has suffered pollution, a long period will be required before the environment can purify itself. In order to eliminate or at least reduce the pollution level, environmental improvement measures have been proposed to enhance the seawater exchange capability and speed up the water purification inside the bay. The study findings presented in this paper are believed to be instructive and useful for future environmental policy makers and it is also anticip展开更多
Complex perturbations in the profile and the sparsity of samples often limit the validity of rapid environmental assessment(REA)in the South China Sea(SCS).In this paper,the remote sensing data were used to estimate s...Complex perturbations in the profile and the sparsity of samples often limit the validity of rapid environmental assessment(REA)in the South China Sea(SCS).In this paper,the remote sensing data were used to estimate sound speed profile(SSP)with the self-organizing map(SOM)method in the SCS.First,the consistency of the empirical orthogonal functions was examined by using k-means clustering.The clustering results indicated that SSPs in the SCS have a similar perturbation nature,which means the inverted grid could be expanded to the entire SCS to deal with the problem of sparsity of the samples without statistical improbability.Second,a machine learning method was proposed that took advantage of the topological structure of SOM to significantly improve their accuracy.Validation revealed promising results,with a mean reconstruction error of 1.26 m/s,which is 1.16 m/s smaller than the traditional single empirical orthogonal function regression(sEOF-r)method.By violating the constraints of linear inversion,the topological structure of the SOM method showed a smaller error and better robustness in the SSP estimation.The improvements to enhance the accuracy and robustness of REA in the SCS were offered.These results suggested a potential utilization of REA in the SCS based on satellite data and provided a new approach for SSP estimation derived from sea surface data.展开更多
Negative capacitance(NC)has the potential to enable low power microelectronics beyond the fundamental thermionic limit,and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabiliz...Negative capacitance(NC)has the potential to enable low power microelectronics beyond the fundamental thermionic limit,and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabilized by linear dielectric,making negative capacitance ferroelectric field effect transistors(NC-FeFET)possible.Nevertheless,the validity of NC as a physical concept for ferroelectrics remain contentious despite numerous theoretical and experimental investigations,and the intrinsic ferroelectric NC with suppressed polarization has not been demonstrated except locally at vortex core.While NC-FeFET with subthreshold swing(SS)lower than 60 mV/dec limit has been reported,such device characteristics has not been directly connected to suppressed polarization at materials’level,and alternative mechanisms other than NC have also been proposed.Here we demonstrate stable sub-60 mV/dec SS with hysteresis free Isingle bondV in NC-FeFET based on SrTiO_(3)/Pb(Zr_(0.1)Ti_(0.9))O_(3)/SrTiO_(3) heterostructure,and observe its suppressed polarization at both macroscopic and microscopic scales.The intrinsic ferroelectric NC thus is experimentally confirmed and directly connected to NC-FeFET performance,and the mica-based device is also highly flexible and robust under cyclic bending as well as extended heating.展开更多
We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development ...We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g^-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g^-1, respectively.展开更多
Topological polar vortices, which are electric analogs of magnetic objects, present great potential in applications of future nanoelectronics because of their nanometer size, anomalous dielectric response, and chirali...Topological polar vortices, which are electric analogs of magnetic objects, present great potential in applications of future nanoelectronics because of their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities, it is prerequisite to manipulate the polar states and chirality by using external stimuli. Here, we probe the evolutions of polar state and chirality evolutions of topological polar vortices in Pb TiO;/Sr TiO;superlattices under an electric field by using atomically resolved in situ scanning transmission electron microscopy and phase-field simulations. We find that, under electric field, the chiral vortex cores can be moved laterally to form close-pair structures, transform into a/c domain stripes, and finally become a nonchiral c-domain. Such transition is reversible and spontaneous after bias removal. Interestingly, during switching and backswitching events, the vortex rotation can be changed, offering a potential strategy to manipulate vortex chirality. The revealed dynamic behavior of individual polar vortices at the atomic scale provides fundamentals for future device applications.展开更多
基金National Natural Science Foundation of China,Grant/Award Numbers:21905265,52072322,U1930402,61974042National Science Foundation,Civil,Mechanical and Manufacturing Innovation,Grant/Award Number:1911905+3 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:WK2060140026Department of Science and Technology of Sichuan Province,Grant/Award Numbers:2019‐GH02‐00052‐HZ,2019YFG0220Scientific and Technological Innovation Foundation of Shunde Graduate School,Grant/Award Number:BK19BE024National Key Research and Development Program of China,Grant/Award Number:2017YFA0303403。
文摘A new concentrated ternary salt ether-based electrolyte enables stable cycling of lithium metal battery(LMB)cells with high-mass-loading(13.8 mg cm^(−2),2.5 mAh cm^(−2))NMC622(LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2))cathodes and 50μm Li anodes.Termed“CETHER-3,”this electrolyte is based on LiTFSI,LiDFOB,and LiBF4 with 5 vol%fluorinated ethylene carbonate in 1,2-dimethoxyethane.Commer-cial carbonate and state-of-the-art binary salt ether electrolytes were also tested as baselines.With CETHER-3,the electrochemical performance of the full-cell battery is among the most favorably reported in terms of high-voltage cycling stability.For example,LiNi_(x)Mn_(y)Co_(1-x-y)O_(2)(NMC)-Li metal cells retain 80%capacity at 430 cycles with a 4.4 V cut-off and 83%capacity at 100 cycles with a 4.5 V cut-off(charge at C/5,discharge at C/2).According to simulation by density functional theory and molecular dynamics,this favorable performance is an outcome of enhanced coordination between Li^(+)and the solvent/salt molecules.Combining advanced microscopy(high-resolution transmission electron microscopy,scanning electron microscopy)and surface science(X-ray photoelectron spectroscopy,time-of-fight secondary ion mass spectroscopy,Fourier-transform infrared spectroscopy,Raman spectroscopy),it is demonstrated that a thinner and more stable cathode electrolyte interphase(CEI)and solid electrolyte interphase(SEI)are formed.The CEI is rich in lithium sulfide(Li_(2)SO_(3)),while the SEI is rich in Li_(3)N and LiF.During cycling,the CEI/SEI suppresses both the deleterious transformation of the cathode R-3m layered near-surface structure into disordered rock salt and the growth of lithium metal dendrites.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFA1200700)the National Natural Science Foundation of China(Grant Nos.T2222025 and 62174053)+5 种基金the Open Research Projects of Zhejiang Laboratory(Grant No.2021MD0AB03)the Shanghai Science and Technology Innovation Action Plan(Grant Nos.21JC1402000 and 21520714100)the Guangdong Provincial Key Laboratory Program(Grant No.2021B1212040001)the Fundamental Research Funds for the Central Universitiessupport from the Zuckerman STEM Leadership ProgramPazy Research Foundation(Grant No.149-2020)。
文摘Hafnium-based ferroelectric films,remaining their ferroelectricity down to nanoscale thickness,present a promising application for low-power logic devices and nonvolatile memories.It has been appealing for researchers to reduce the required temperature to obtain the ferroelectric phase in hafnium-based ferroelectric films for applications such as flexible and wearable electronics.This work demonstrates that a remanent polarization(P_(r))value of>5μC/cm^(2)can be obtained in asdeposited Hf_(0.5)Zr_(0.5)O_(2)(HZO)films that are fabricated by thermal atomic layer deposition(TALD)under low temperature of 250℃.The ferroelectric orthorhombic phase(o-phase)in the as-deposited HZO films is detected by scanning transmission electron microscopy(STEM).This low fabrication temperature further extends the compatibility of ferroelectric HZO films to flexible electronics and avoids the cost imposed by following high-temperature annealing treatments.
基金The National Natural Science Foundation of China under contract No.41406041the Natural Science Foundation of Guangdong Province under contract No.2014A030310256+1 种基金the Project of Enhancing School with Innovation of Guangdong Ocean University under contract No.GDOU2016050246the Excellent Young Teachers Program of GDOU under contract No.HDYQ2015010
文摘For acoustic detection of internal waves, the core issue is to obtain the temporal and spatial distribution of the sound speed profile(SSP). In the inversion process, the SSP is usually expressed by a few parameters through expansion. However, information about internal waves may sometimes be hard to read directly from the inversion results. The aim of this paper is to characterize the internal waves directly though expansion coefficients. By deducing the dynamic equations of the internal waves, an orthogonal basis called the hydrodynamic normal modes(HNMs) can be extracted from a certain number of SSP samples. Unlike the existing widely used empirical orthogonal functions(EOFs), the HNMs have a more explicit physical meaning that is directly related to internal wave activity. The HNMs are then used to expand the SSP time series, and the expansion coefficients are derived.Eventually, information about internal waves can be read directly from the time derivative of the expansion coefficients of the first two modes. In this study, this method is applied to thermistor string profiles from the northern shelf of the South China Sea, where the SSP shows evident spatial and temporal variations due to internal waves. The results show that the SSP can be described approximately by the first two modes with adequate precision. The special oscillation structure of the time derivative of the expansion coefficients can be used to detect internal solitary waves. The expansion coefficients can also give information on internal solitary wave amplitude and width. According to theoretical and experimental analysis, it can be concluded that the internal waves monitoring method introduced in this paper is effective. The HNMs method is simple to apply and depends less on sample data than EOFs. It could be used as an efficient alternative to EOFs to expand the use of the SSP in highly variable areas, where internal waves are intensive.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC1404700)the National Natural Science Foundation of China(Grant No.51609056)+3 种基金the Guangdong Special Fund for Economic Development(Marine Economic)(Grant No.TBD)the Discipline Layout Project for Basic Research of Shenzhen Science and Technology Innovation Committee(Grant No.20170418)the Hydraulic Engineering Science and Technology Project of Hunan Province(Grant No.201513-37)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)
文摘In view of the severity of oceanic pollution, based on the finite volume coastal ocean model (FVCOM), a Lagrangian particle-tracking model was used to numerically investigate the coastal pollution transport and water exchange capability in Tangdao Bay, in China. The severe pollution in the bay was numerically simulated by releasing and tracking particles inside it. The simulation results demonstrate that the water exchange capability in the bay is very low. Once the bay has suffered pollution, a long period will be required before the environment can purify itself. In order to eliminate or at least reduce the pollution level, environmental improvement measures have been proposed to enhance the seawater exchange capability and speed up the water purification inside the bay. The study findings presented in this paper are believed to be instructive and useful for future environmental policy makers and it is also anticip
基金The Natural Science Foundation of Guangdong Province under contract No.2022A1515011519the National Natural Science Foundation of China under contract No.11904290.
文摘Complex perturbations in the profile and the sparsity of samples often limit the validity of rapid environmental assessment(REA)in the South China Sea(SCS).In this paper,the remote sensing data were used to estimate sound speed profile(SSP)with the self-organizing map(SOM)method in the SCS.First,the consistency of the empirical orthogonal functions was examined by using k-means clustering.The clustering results indicated that SSPs in the SCS have a similar perturbation nature,which means the inverted grid could be expanded to the entire SCS to deal with the problem of sparsity of the samples without statistical improbability.Second,a machine learning method was proposed that took advantage of the topological structure of SOM to significantly improve their accuracy.Validation revealed promising results,with a mean reconstruction error of 1.26 m/s,which is 1.16 m/s smaller than the traditional single empirical orthogonal function regression(sEOF-r)method.By violating the constraints of linear inversion,the topological structure of the SOM method showed a smaller error and better robustness in the SSP estimation.The improvements to enhance the accuracy and robustness of REA in the SCS were offered.These results suggested a potential utilization of REA in the SCS based on satellite data and provided a new approach for SSP estimation derived from sea surface data.
基金We acknowledge the support of National Natural Science Foundation of China(12192213,52302142,92066203 and 92066102)Shenzhen Science and Technology Program(KQTD20170810160424889,RCYX20200714114733204,JCYJ20200109115219157 and JCYJ20200109115210307)+2 种基金Guangdong Provincial Key Laboratory Program(2021B1212040001)from the Department of Science and Technology of Guangdong Province,Guangdong Basic and Applied Basic Research Foundation(2021A1515110689)China Postdoctoral Science Foundation(2021M693281).
文摘Negative capacitance(NC)has the potential to enable low power microelectronics beyond the fundamental thermionic limit,and it has been theorized that the thermodynamically unstable NC of ferroelectrics can be stabilized by linear dielectric,making negative capacitance ferroelectric field effect transistors(NC-FeFET)possible.Nevertheless,the validity of NC as a physical concept for ferroelectrics remain contentious despite numerous theoretical and experimental investigations,and the intrinsic ferroelectric NC with suppressed polarization has not been demonstrated except locally at vortex core.While NC-FeFET with subthreshold swing(SS)lower than 60 mV/dec limit has been reported,such device characteristics has not been directly connected to suppressed polarization at materials’level,and alternative mechanisms other than NC have also been proposed.Here we demonstrate stable sub-60 mV/dec SS with hysteresis free Isingle bondV in NC-FeFET based on SrTiO_(3)/Pb(Zr_(0.1)Ti_(0.9))O_(3)/SrTiO_(3) heterostructure,and observe its suppressed polarization at both macroscopic and microscopic scales.The intrinsic ferroelectric NC thus is experimentally confirmed and directly connected to NC-FeFET performance,and the mica-based device is also highly flexible and robust under cyclic bending as well as extended heating.
基金This work is financially supported by the National Natural Science Foundation of China (Nos. 21527810, 21190041, 21521063, 11274107, 11574078 and 51702095) and the Fundamental Research Funds for the Central Universities (No. 531107040992).
文摘We report an in situ carbothermic reduction process to prepare osiers-sprout-like heteroatom-doped carbon nanofibers. The dosage of copper salts and a unique annealing process have a crucial effect on the development of this unique carbon structure. A systematic analysis is performed to elucidate the possible mechanism of synthesis of the carbon nanofibers decorated with carbon bubbles. As anodes for rechargeable lithium/sodium ion batteries, the heteroatom-doped nanofibers exhibit high reversible capacities and satisfactory long-term cycling stabilities. The osiers-sprout-like heteroatom-doped carbon nanofiber electrodes deliver an ultrastable cycling performance with reversible capacities of 480 and 160 mAh·g^-1 for lithium-ion and sodium-ion batteries after 900 cycles at a current density of 800 mA·g^-1, respectively.
基金supported by the National Natural Science Foundation of China(Grant Nos.51991340,51991344,11974023,51672007,21773303,11875229,and 51872251)the Chinese Academy of Sciences(Grant Nos.XDB33030200,and ZDYZ2015-1)+4 种基金the National Key R&D Program of China(Grant No.2016YFA0300804)the Key R&D Program of Guangdong Province(Grant Nos.2018B030327001,2018B010109009,and2019B010931001)the Bureau of Industry and Information Technology of Shenzhen(Grant No.201901161512)the Beijing Excellent Talents Training Support(Grant No.2017000026833ZK11)the“2011 Program”Peking-Tsinghua-IOP Collaborative Innovation Center for Quantum Matter。
文摘Topological polar vortices, which are electric analogs of magnetic objects, present great potential in applications of future nanoelectronics because of their nanometer size, anomalous dielectric response, and chirality. To enable the functionalities, it is prerequisite to manipulate the polar states and chirality by using external stimuli. Here, we probe the evolutions of polar state and chirality evolutions of topological polar vortices in Pb TiO;/Sr TiO;superlattices under an electric field by using atomically resolved in situ scanning transmission electron microscopy and phase-field simulations. We find that, under electric field, the chiral vortex cores can be moved laterally to form close-pair structures, transform into a/c domain stripes, and finally become a nonchiral c-domain. Such transition is reversible and spontaneous after bias removal. Interestingly, during switching and backswitching events, the vortex rotation can be changed, offering a potential strategy to manipulate vortex chirality. The revealed dynamic behavior of individual polar vortices at the atomic scale provides fundamentals for future device applications.