In this letter,an enhancement-mode(E-mode)GaN p-channel field-effect transistor(p-FET)with a high current den-sity of−4.9 mA/mm based on a O_(3)-Al_(2)O_(3)/HfO_(2)(5/15 nm)stacked gate dielectric was demonstrated on ...In this letter,an enhancement-mode(E-mode)GaN p-channel field-effect transistor(p-FET)with a high current den-sity of−4.9 mA/mm based on a O_(3)-Al_(2)O_(3)/HfO_(2)(5/15 nm)stacked gate dielectric was demonstrated on a p++-GaN/p-GaN/AlN/AlGaN/AlN/GaN/Si heterostructure.Attributed to the p++-GaN capping layer,a good linear ohmic I−V characteristic fea-turing a low-contact resistivity(ρc)of 1.34×10^(−4)Ω·cm^(2) was obtained.High gate leakage associated with the HfO_(2)high-k gate dielectric was effectively blocked by the 5-nm O_(3)-Al_(2)O_(3)insertion layer grown by atomic layer deposition,contributing to a high ION/IOFF ratio of 6×10^(6)and a remarkably reduced subthreshold swing(SS)in the fabricated p-FETs.The proposed structure is compelling for energy-efficient GaN complementary logic(CL)circuits.展开更多
Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biol...Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.展开更多
Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electro...Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact.展开更多
Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the ex...Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF.展开更多
基金This work was supported in part by the National Key Research and Development Program of China under Grant 2022YFB3604400in part by the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)+4 种基金in part by CAS-Croucher Funding Scheme under Grant CAS22801in part by National Natural Science Foundation of China under Grant 62074161,Grant 62004213,and Grant U20A20208in part by the Beijing Municipal Science and Technology Commission project under Grant Z201100008420009 and Grant Z211100007921018in part by the University of CASin part by IMECAS-HKUST-Joint Laboratory of Microelectronics.
文摘In this letter,an enhancement-mode(E-mode)GaN p-channel field-effect transistor(p-FET)with a high current den-sity of−4.9 mA/mm based on a O_(3)-Al_(2)O_(3)/HfO_(2)(5/15 nm)stacked gate dielectric was demonstrated on a p++-GaN/p-GaN/AlN/AlGaN/AlN/GaN/Si heterostructure.Attributed to the p++-GaN capping layer,a good linear ohmic I−V characteristic fea-turing a low-contact resistivity(ρc)of 1.34×10^(−4)Ω·cm^(2) was obtained.High gate leakage associated with the HfO_(2)high-k gate dielectric was effectively blocked by the 5-nm O_(3)-Al_(2)O_(3)insertion layer grown by atomic layer deposition,contributing to a high ION/IOFF ratio of 6×10^(6)and a remarkably reduced subthreshold swing(SS)in the fabricated p-FETs.The proposed structure is compelling for energy-efficient GaN complementary logic(CL)circuits.
基金supported by the Jiangsu Province Natural Science Foundation(Grant No.BK20201492)the Key Medical Research Project of Jiangsu Provincial Health Commission(Grant No.K2019002)the Clinical Capacity Improvement Project of Jiangsu Province People's Hospital(Grant No.JSPH-MA-2021-8).
文摘Liquid-liquid phase separation,a novel biochemical phenomenon,has been increasingly studied for its medical applications.It underlies the formation of membrane-less organelles and is involved in many cellular and biological processes.During transcriptional regulation,dynamic condensates are formed through interactions between transcriptional elements,such as transcription factors,coactivators,and mediators.Cancer is a disease characterized by uncontrolled cell proliferation,but the precise mechanisms underlying tumorigenesis often remain to be elucidated.Emerging evidence has linked abnormal transcriptional condensates to several diseases,especially cancer,implying that phase separation plays an important role in tumorigenesis.Condensates formed by phase separation may have an effect on gene transcription in tumors.In the present review,we focus on the correlation between phase separation and transcriptional regulation,as well as how this phenomenon contributes to cancer development.
基金supported in part by the National Key Research and Development Program of China under Grant 2022YFB3604400in part by the Youth Innovation Promotion Association of Chinese Academy Sciences(CAS)+4 种基金in part by CAS-Croucher Funding Scheme under Grant CAS22801in part by National Natural Science Foundation of China under Grant 62074161,Grant 62004213,and Grant U20A20208in part by the Beijing Municipal Science and Technology Commission project under Grant Z201100008420009 and Grant Z211100007921018in part by the University of CASin part by IMECAS-HKUST-Joint Laboratory of Microelectronics.
文摘Enhancement-mode(E-mode)GaN-on-Si radio-frequency(RF)high-electron-mobility transistors(HEMTs)were fabri-cated on an ultrathin-barrier(UTB)AlGaN(<6 nm)/GaN heterostructure featuring a naturally depleted 2-D electron gas(2DEG)channel.The fabricated E-mode HEMTs exhibit a relatively high threshold voltage(VTH)of+1.1 V with good uniformity.A maxi-mum current/power gain cut-off frequency(fT/fMAX)of 31.3/99.6 GHz with a power added efficiency(PAE)of 52.47%and an out-put power density(Pout)of 1.0 W/mm at 3.5 GHz were achieved on the fabricated E-mode HEMTs with 1-μm gate and Au-free ohmic contact.
基金This research was supported by the Shanghai Natural Science Fund(No.21ZR1447500)Shanghai Jiao Tong University School of Medicine Affiliated Renji Hospital Baoshan Branch Medical Key Specialty Construction Project(No.rbzdzk-2023-001).
文摘Background:Hypertrophy of the ligamentumflavum(HLF)is a common contributor to spinal stenosis which results in significant neurological impairments.Circular RNA(circRNA)circ_0003609 has been linked to HLF;however,the exact mechanism by which it causes this disease is unclear.Methods:Circ_0003609 expressions were regulated in HLF cells by overexpression vectors and RNA interference.Cell proliferation andfibrosis-related gene expression were checked by the Cell Counting Kit-8(CCK-8)assay and western blotting.CircBank’s prediction of the association between miR-155 and circ_0003609 was supported by a dual-luciferase reporter experiment.The function of the miR-155/sirtuin 1(SIRT1)axis in controlling HLFfibrosis was further examined.Results:Overexpression of circ_0003609 suppressed HLF cell propagation andfibrosis compared to its silencing.It was found that circ_0003609 served as the sponge for miR-155 and that the circ_0003609/miR-155 axis controlled thefibrosis of HLF cells.It was found that circ_0003609 acted as a sponge for miR-155,regulating thefibrosis of HLF cells.Further,miR-155 targets SIRT1,and the miR-155/SIRT1 axis promotes HLF cellfibrosis.Conclusion:Circ_0003609 ameliorates hypertrophied ligamentumflavum(LF)by modulating the miR-155/SIRT1 axis,indicating a potential treatment approach for HLF.