期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Integrated UHPLC-MS and network pharmacology to explore the active constituents and pharmacological mechanisms of Shenzao dripping pills against coronary heart disease 被引量:1
1
作者 Tao Hu ke-ning zheng +4 位作者 Jia-Yin Liang Dan Tang Lu-Yong Zhang Ming-Hua Xian Shu-Mei Wang 《Traditional Medicine Research》 2022年第3期68-80,共13页
Background:Shenzao dripping pills(SZDP)is an empirical prescription of traditional Chinese medicine that is mainly used to treat coronary heart disease.However,the chemical composition and pharmacological mechanisms o... Background:Shenzao dripping pills(SZDP)is an empirical prescription of traditional Chinese medicine that is mainly used to treat coronary heart disease.However,the chemical composition and pharmacological mechanisms of SZDP are unknown.Methods:In this study,ultra-high performance liquid chromatography-quadruple-Exactive Orbitrap mass spectrometry was used to identify the chemical components in extracts and medicated plasma of SZDP.Subsequently,we performed network pharmacology methods,including target prediction by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and Integrative Pharmacology-based Research Platform of Traditional Chinese Medicine,protein-protein interaction network via STRING database;further,the key targets and compounds were screened using Cytoscape.Finally,the key targets and compounds were validated by molecular docking.Results:72 chemical constituents were identified from SZDP by high performance liquid chromatography and mass spectrometry technology.Among the components absorbed into plasma by SZDP,24 prototype components and 9 metabolized components were identified.The network pharmacology analysis of the prototype components showed that there are 13 key compounds(including ginsenoside Rc,Rb1,Rb2,ferulic acid,etc.),90 proteins(including proto-oncogene tyrosine-protein kinase Src,nuclear receptor subfamily 3 group C member 1,caspase-3,etc.),and 10 pathways(including estrogen,IL-17 and VEGF signaling pathway,etc.)that play an essential role in the treatment of coronary heart disease with SZDP.In addition,the results of molecular docking revealed that ginsenosides Rc,Rb2 and Rb1 have strong binding activities to the caspase-3,as well as ginsenoside Rb2 to the nuclear receptor subfamily 3 group C member 1.Conclusion:This study showed that SZDP might act through multiple chemical constituents and targets against coronary heart disease. 展开更多
关键词 Shenzao dripping pills coronary heart disease chemical constituents network pharmacology molecular docking
下载PDF
Neuroprotective effect and mechanism of daidzein in oxygen-glucose deprivation/reperfusion injury based on experimental approaches and network pharmacology
2
作者 Ming-Hua Xian Si-Kai Zhan +4 位作者 ke-ning zheng Qu-liu ke-ning Li Jia-Yin Liang Shu-Mei Wang 《Traditional Medicine Research》 2021年第5期10-19,共10页
Background:Daidzein,phytoestrogens derived from the Pueraria lobata(Willd.)Ohwi root used in traditional Chinese medicine,has a wide range of biological activities,including antioxidant,anti-inflammatory,and neuroprot... Background:Daidzein,phytoestrogens derived from the Pueraria lobata(Willd.)Ohwi root used in traditional Chinese medicine,has a wide range of biological activities,including antioxidant,anti-inflammatory,and neuroprotection.However,the neuroprotective role of daidzein in oxygen-glucose deprivation/reperfusion injury and its underlying mechanism are still unknown.Methods:In this study,we used pheochromocytoma cells induced by oxygen-glucose deprivation and reperfusion to study the potential effect in the protection of the nerve cells.Then,we used molecular docking simulation and network pharmacology to predict the possible targets and pharmacological pathways of daidzein.Western blot was used to verify the expression of target proteins with or without adding the inhibitors.Results:After daidzein treatment,cell vitality had an upward trend(P<0.05)and the release of lactate dehydrogenase had a downward trend(P<0.01)in dose-dependent compared with the model group by exposure to oxygen-glucose deprivation and reperfusion.Several core targets were analyzed through network pharmacology and molecular docking including catalase,peroxisome proliferator-activated receptor gamma,vascular endothelial growth factor A,interleukin-6,tumor necrosis factor,nitric oxide synthase 3,prostaglandin-endoperoxide synthase 2,and RAC-alpha serine/threonine kinase 1.These results suggest that catalase may be a first-ranked target for the neuroprotective role of daidzein.Gene Ontology enrichment analysis indicated the pathways mainly contained molecule metabolic process,while Kyoto Encyclopedia of Genes and Genomes enrichment analysis focus on pathways in terms of inflammation such as tumor necrosis factor signal pathway.Then,Western blot results showed that daidzein had a significant increase on the expression of protein catalase(P<0.01).Daidzein reversed catalase level alterations after oxygen-glucose deprivation reperfusion injury in a dose-dependent manner which was consistent with the catalase antagonists-based experiments.Conclusion:These outcomes provide new insights into the neuroprotective effect and mechanism of daidzein in oxygen-glucose deprivation/reperfusion injury. 展开更多
关键词 DAIDZEIN NEUROPROTECTION CATALASE oxygen-glucose deprivation and reperfusion network pharmacology
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部