Head and neck squamous cell carcinoma (HNSCC) is a prevalent and lethal solid tumor with a high mortality rate. Conventional cancertreatments, including surgery, radiotherapy, and chemotherapy, primarily target cancer...Head and neck squamous cell carcinoma (HNSCC) is a prevalent and lethal solid tumor with a high mortality rate. Conventional cancertreatments, including surgery, radiotherapy, and chemotherapy, primarily target cancer cell eradication. However, uncontrolled proliferation and metabolic activities of these cells result in abnormalities in nutrient levels, hypoxia, and immunosuppression within the tumor microenvironment (TME). These factors constrain the efficacy of traditional treatments by promoting drug resistance, recurrence, and metastasis. Nanomaterials (NMs), such as nanozymes, can exhibit enzymatic activity similar to that of natural enzymes and offer a promising avenuefor the direct modification of the TME through catalytic oxidation-reduction processes. Moreover, they can serve as sensitizers or drug deliverycarriers, enhancing the efficacy of traditional treatment methods. Recently, NMs have garnered significant attention from oncologists. Thisreview begins with an overview of the composition and unique characteristics of the TME. Subsequently, we comprehensively exploredthe application of NMs in the treatment of HNSCC. Finally, we discuss the potential prospects and challenges associated with usingNMs in biomedical research.展开更多
Parkinson’s disease(PD)is a prevalent neurodegenerative disorder accompanied by movement disorders and neuroinflammatory injury.Anti-inflammatory intervention to regulate oxidative stress in the brain is beneficial f...Parkinson’s disease(PD)is a prevalent neurodegenerative disorder accompanied by movement disorders and neuroinflammatory injury.Anti-inflammatory intervention to regulate oxidative stress in the brain is beneficial for managing PD.However,traditional natural antioxidants have failed to meet the clinical treatment demands due to insufficient activity and sustainability.Herein,Cu-doping zeolite imidazolate framework-8(ZIF-8)nanozyme is designed to simulate Cu/Zn superoxide dismutase(SOD)by biomimetic mineralization.The nanozyme composite is then integrated into thermosensitive hydrogel(poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid)(PLGA-PEG-PLGA))to form an effective antioxidant system(Cu-ZIF@Hydrogel).The thermosensitive hydrogel incorporating nanozymes demonstrate distinct viscoelastic properties aimed at enhancing local nanozyme adhesion,prolonging nanozyme retention time,and modulating antioxidant activity,thus significantly improving the bioavailability of nanozymes.At the cellular and animal levels of PD,we find that Cu-ZIF@Hydrogel bypass the blood-brain barrier and efficiently accumulate in the nerve cells.Moreover,the Cu-ZIF@Hydrogel significantly alleviate the PD’s behavioral and pathological symptoms by reducing the neuroinflammatory levels in the lesion site.Therefore,the hydrogel-incorporating nanozyme system holds great potential as a simple and reliable avenue for managing PD.展开更多
The abundance of molecules on early Earth likely enabled a wide range of prebiotic chemistry,with peptides playing a key role in the development of early life forms and the evolution of metabolic pathways.Among peptid...The abundance of molecules on early Earth likely enabled a wide range of prebiotic chemistry,with peptides playing a key role in the development of early life forms and the evolution of metabolic pathways.Among peptides,those with enzyme-like activities occupy a unique position between peptides and enzymes,combining both structural flexibility and catalytic functionality.However,their full potential remains largely untapped.Further exploration of these enzyme-like peptides at the nanoscale could provide valuable insights into modern nanotechnology,biomedicine,and even the origins of life.Hence,this review introduces the groundbreaking concept of“peptide nanozymes(PepNzymes)”,which includes single peptides exhibiting enzyme-like activities,peptide-based nanostructures with enzyme-like activities,and peptide-based nanozymes,thus enabling the investigation of biological phenomena at nanoscale dimensions.Through the rational design of enzyme-like peptides or their assembly with nanostructures and nanozymes,researchers have found or created PepNzymes capable of catalyzing a wide range of reactions.By scrutinizing the interactions between the structures and enzyme-like activities of PepNzymes,we have gained valuable insights into the underlying mechanisms governing enzyme-like activities.Generally,PepNzymes play a crucial role in biological processes by facilitating small-scale enzyme-like reactions,speeding up molecular oxidation-reduction,cleavage,and synthesis reactions,leveraging the functional properties of peptides,and creating a stable microenvironment,among other functions.These discoveries make PepNzymes useful for diagnostics,cellular imaging,antimicrobial therapy,tissue engineering,anti-tumor treatments,and more while pointing out opportunities.Overall,this research provides a significant journey of PepNzymes’potential in various biomedical applications,pushing them towards new advancements.展开更多
Erratum to Nano Research 2022,15(2):1554–1563 https://doi.org/10.1007/s12274-021-3701-8 Figure 3(d)in the original paper contained duplicated micrographs(BPQDs+NIR)for different xenografts(B16 vs.CNE-2).This error di...Erratum to Nano Research 2022,15(2):1554–1563 https://doi.org/10.1007/s12274-021-3701-8 Figure 3(d)in the original paper contained duplicated micrographs(BPQDs+NIR)for different xenografts(B16 vs.CNE-2).This error did not affect any of the conclusions from the published paper.展开更多
The authors regret<that the published version of the above article contained an error in Figure 5d,which was not identified during the proofing stage.The Figure 5d has been revised as follow.The authors would like ...The authors regret<that the published version of the above article contained an error in Figure 5d,which was not identified during the proofing stage.The Figure 5d has been revised as follow.The authors would like to apologise for any inconvenience caused and state that the correction does not change the scientific conclusions of the article in any way.展开更多
Nanozymes,a type of nanomaterials with enzyme-like activity,have shown great potential to replace natural enzymes in many fields such as biochemical detection,environmental management and disease treatment.However,the...Nanozymes,a type of nanomaterials with enzyme-like activity,have shown great potential to replace natural enzymes in many fields such as biochemical detection,environmental management and disease treatment.However,the catalytic efficiency and substrate specificity of nanozymes still need improvement.To further optimize the enzymatic properties of nanozymes,recent studies have introduced the structural characteristics of natural enzymes into the rational design of nanozymes,either by employing small molecules to mimic the cofactors of natural enzymes to boost nanozymes’catalytic potential,or by simulating the active center of natural enzymes to construct the nanostructure of nanozymes.This review introduces the commonly used bio-inspired strategies to create nanozymes,aiming at clarifying the current progress and bottlenecks.Advances and challenges focusing on the research of bio-inspired nanozymes are outlined to provide ideas for the de novo design of ideal nanozymes.展开更多
Adhesive hydrogels have broad applications ranging from tissue engineering to bioelectronics;however,fabricating adhesive hydrogels with multiple functions remains a challenge.In this study,a mussel-inspired tannic ac...Adhesive hydrogels have broad applications ranging from tissue engineering to bioelectronics;however,fabricating adhesive hydrogels with multiple functions remains a challenge.In this study,a mussel-inspired tannic acid chelated-Ag(TA-Ag)nanozyme with peroxidase(POD)-like activity was designed by the in situ reduction of ultrasmall Ag nanoparticles(NPs)with TA.The ultrasmall TA-Ag nanozyme exhibited high catalytic activity to induce hydrogel self-setting without external aid.The nanozyme retained abundant phenolic hydroxyl groups and maintained the dynamic redox balance of phenol-quinone,providing the hydrogels with long-term and repeatable adhesiveness,similar to the adhesion of mussels.The phenolic hydroxyl groups also afforded uniform distribution of the nanozyme in the hydrogel network,thereby improving its mechanical properties and conductivity.Furthermore,the nanozyme endowed the hydrogel with antibacterial activity through synergistic effects of the reactive oxygen species generated via POD-like catalytic reactions and the intrinsic bactericidal activity of Ag.Owing to these advantages,the ultrasmall TA-Ag nanozyme-catalyzed hydrogel could be effectively used as an adhesive,antibacterial,and implantable bioelectrode to detect bio-signals,and as a wound dressing to accelerate tissue regeneration while preventing infection.Therefore,this study provides a promising approach for the fabrication of adhesive hydrogel bioelectronics with multiple functions via mussel-inspired nanozyme catalysis.展开更多
Nanozyme,a class of nanomaterials with intrinsic enzymelike properties,is a new concept which has been included in the Encyclopedia of China and the textbook of enzyme engineering.Since the first evidence published in...Nanozyme,a class of nanomaterials with intrinsic enzymelike properties,is a new concept which has been included in the Encyclopedia of China and the textbook of enzyme engineering.Since the first evidence published in 2007(Gao et al.,2007),great progress has been achieved in the study of nanozyme from new concept,new material to its new application,and it becomes an emerging field bridging nanotechnology and biology(Gao and Yan,2016).展开更多
Natural enzymes,owing to their outstanding catalytic efficiency and substrate specificity,have been used in a variety of applications including clinical diagnosis,environmental monitoring and wastewater treatment.Howe...Natural enzymes,owing to their outstanding catalytic efficiency and substrate specificity,have been used in a variety of applications including clinical diagnosis,environmental monitoring and wastewater treatment.However,they face inevitable problems such as relatively high cost and lack of stability,dramatically hindering their practical applications in the industry.Recently,a class of nanomaterial that possesses intrinsic enzyme-like properties,nanozyme,has emerged exhibiting numerous advantages over its natural counterpart and has been used as a viable enzyme alternative.In the past decade there are many reviews on nanozyme.The previous discussions tend to view nanozyme as a type of nanomaterial rather than an enzyme.However,it is the enzyme-like activity of nanozymes that provides foundation for their application and nanozymes with the same enzymatic activity usually have some regularity in application.Herein,in this review,we attempt to classify nanozymes by their enzyme-like activity to explain the application principle and relevant cases of nanozymes in clinical diagnosis,environmental monitoring and wastewater treatment,expecting to promote deeper thinking of nanozymes as enzyme mimics and provide useful guidance for future research.展开更多
CONSPECTUS:Nanozymes,nanomaterials with enzyme-like activities with high structural stability,adjustable catalytic activity,functional diversity,recyclability,and feasibility in large-scale preparation,have become a h...CONSPECTUS:Nanozymes,nanomaterials with enzyme-like activities with high structural stability,adjustable catalytic activity,functional diversity,recyclability,and feasibility in large-scale preparation,have become a hot spot in the field of artificial enzymes in recent years and are expected to become potential surrogates and competitors for natural enzymes in practical applications.With the development of in-depth research and a wide range of application requirements,creating nanozymes with catalytic performance comparable to or even surpassing that of natural enzymes has been the key research topic in this field.Most of the nanozymes reported in the past were obtained based on random synthesis and screening,for which the catalytic efficiency is far inferior to that of natural enzymes.Natural enzymes that have evolved over hundreds of millions of years have developed a lot of high-efficiency catalysis know-how hidden in their structural features.To create highly active nanozymes,we assumed that there is a general structure−activity relationship between nanozymes and natural enzymes and proposed the nanozyme optimization strategy by grafting the catalytic principles of natural enzymes into the rational design of nanozymes.On the basis of this bioinspired strategy,a series of nanozymes that exhibit similar catalytic activities that are closer to or even beyond those of natural enzymes have been successfully synthesized.By now,rationally designed high-activity bioinspired nanozymes have become a hot topic in the current research on nanozymes.In this Account,we focus on recent representative research progress in the systemic design and construction of bioinspired nanozymes and are devoted to introducing strategic concepts in the bioinspired optimization of nanozymes.We show that the de novo design of nanozymes by simulating the amino acid microenvironment and using metal-free architecture and the coordination structure of metal active sites in natural enzymes is an effective strategy for significantly improving the catalytic performance of nanozymes.A future perspective of the challenges and countermeasures of bioinspired nanozymes is proposed on the basis of these achievements.We hope that the biologically inspired perception will arouse widespread interest in fundamental research and practical applications as well as provide inspiration for the rational design of nanozymes.展开更多
Ferritin, an iron storage protein naturally occurring in the body, has emerged as a promising nanocarrier thanks to its unique architecture, excellent biocompatibility, and ability to self-assemble/disassemble (Fan e...Ferritin, an iron storage protein naturally occurring in the body, has emerged as a promising nanocarrier thanks to its unique architecture, excellent biocompatibility, and ability to self-assemble/disassemble (Fan et al., 2013). More specifically, the finding that human H-ferritin intrinsically targets tumor cells via binding to its receptor transferrin receptor 1 (TfR1) (Li et al., 2010; Fan et al., 2012; Liang et al., 2014; Zhao et al., 2016) inspired research into using ferritins for tumor target therapy.展开更多
Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their high stability,easy preparation,and tunable catalytic properties,especially in the field of cancer therap...Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their high stability,easy preparation,and tunable catalytic properties,especially in the field of cancer therapy.However,the unfavorable catalytic effects of nanozymes in the acidic tumor microenvironment have limited their applications.Herein,we developed a biomimetic erythrocyte membrane-camouflaged ultrasmall black phosphorus quantum dots(BPQDs)nanozymes that simultaneously exhibited an exceptional near-infrared(NIR)photothermal property and dramatically photothermal-enhanced glucose oxidase(GOx)-like activity in the acidic tumor microenvironment.We demonstrated the engineered BPQDs gave a photothermal conversion efficiency of 28.9%that could rapidly heat the tumor up to 50℃ while effectively localized into tumors via homing peptide iRGD leading after intravenously injection.Meanwhile,the significantly enhanced GOx-like activity of BPQDs under NIR irradiation was capable of catalytical generating massive toxic reactive oxygen species via using cellular glucose.By combining the intrinsic photothermal property and the unique photothermal-enhanced GOx-like catalytic activity,the developed BPQDs were demonstrated to be an effective therapeutic strategy for inhibiting tumor growth in vivo.We believe that this work will provide a novel perspective for the development of nanozymes in tumor catalytic therapy.展开更多
Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressi ng need to identify plaque vuln erability for the treatment of carotid ...Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressi ng need to identify plaque vuln erability for the treatment of carotid and coronary artery diseases. Nano materials with en zyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioe ngin eered mag netoferritin nan oparticles (M-HFn NPs) functionally mimic peroxidase en zyme and can intrin sically recog nize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r= 0.89, P< 0.0001).展开更多
Engineered nanocarriers have been widely developed for tumor theranostics.However,the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remain...Engineered nanocarriers have been widely developed for tumor theranostics.However,the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remains a major challenge.Here,by using tailor-functionalized human H-ferritin(HFn),we developed a triple-modality nanoprobe IRdye800-M-HFn and achieved the early imaging of tumor cells before the formation of solid tumor tissues.Then,we developed an HFn-doxorubicin(Dox)drug delivery system by loading Dox into the HFn protein cage and achieved early-stage tumor therapy.The intravenous injection of HFn nanoprobes enabled the imaging of tumor cells as early as two days after tumor implantation,and the triple-modality imaging techniques,namely,near-infrared fluorescence molecular imaging(NIR-FMI),magnetic resonance imaging(MRI),and photoacoustic imaging(PAI),ensured the accuracy of detection.Further exploration indicated that HFn could specifically penetrate into pre-solid tumor sites by tumor-associated inflammation-mediated blood vessel leakage,followed by effective accumulation in tumor cells by the specific targeting property of HFn to transferrin receptor 1.Thus,the HFn-Dox drug delivery system delivered Dox into the tumor pre-formation site and effectively killed tumor cells at early stage.IRDye800-M-HFn nanoprobes and HFn-Dox provide promising strategies for early-stage tumor diagnosis and constructive implications for early-stage tumor treatment.展开更多
基金supported by medical science research joint construction project of Henan(71188)Henan Provincial Department of Education under grant no.21B320008.
文摘Head and neck squamous cell carcinoma (HNSCC) is a prevalent and lethal solid tumor with a high mortality rate. Conventional cancertreatments, including surgery, radiotherapy, and chemotherapy, primarily target cancer cell eradication. However, uncontrolled proliferation and metabolic activities of these cells result in abnormalities in nutrient levels, hypoxia, and immunosuppression within the tumor microenvironment (TME). These factors constrain the efficacy of traditional treatments by promoting drug resistance, recurrence, and metastasis. Nanomaterials (NMs), such as nanozymes, can exhibit enzymatic activity similar to that of natural enzymes and offer a promising avenuefor the direct modification of the TME through catalytic oxidation-reduction processes. Moreover, they can serve as sensitizers or drug deliverycarriers, enhancing the efficacy of traditional treatment methods. Recently, NMs have garnered significant attention from oncologists. Thisreview begins with an overview of the composition and unique characteristics of the TME. Subsequently, we comprehensively exploredthe application of NMs in the treatment of HNSCC. Finally, we discuss the potential prospects and challenges associated with usingNMs in biomedical research.
基金support by the CAS Interdisciplinary Innovation Team(No.JCTD-2020-08).
文摘Parkinson’s disease(PD)is a prevalent neurodegenerative disorder accompanied by movement disorders and neuroinflammatory injury.Anti-inflammatory intervention to regulate oxidative stress in the brain is beneficial for managing PD.However,traditional natural antioxidants have failed to meet the clinical treatment demands due to insufficient activity and sustainability.Herein,Cu-doping zeolite imidazolate framework-8(ZIF-8)nanozyme is designed to simulate Cu/Zn superoxide dismutase(SOD)by biomimetic mineralization.The nanozyme composite is then integrated into thermosensitive hydrogel(poly(lactic-co-glycolic acid)-poly(ethylene glycol)-poly(lactic-co-glycolic acid)(PLGA-PEG-PLGA))to form an effective antioxidant system(Cu-ZIF@Hydrogel).The thermosensitive hydrogel incorporating nanozymes demonstrate distinct viscoelastic properties aimed at enhancing local nanozyme adhesion,prolonging nanozyme retention time,and modulating antioxidant activity,thus significantly improving the bioavailability of nanozymes.At the cellular and animal levels of PD,we find that Cu-ZIF@Hydrogel bypass the blood-brain barrier and efficiently accumulate in the nerve cells.Moreover,the Cu-ZIF@Hydrogel significantly alleviate the PD’s behavioral and pathological symptoms by reducing the neuroinflammatory levels in the lesion site.Therefore,the hydrogel-incorporating nanozyme system holds great potential as a simple and reliable avenue for managing PD.
基金funded by the Key Project of the Joint Fund for Regional Innovation and Development of the National Natural Science Foundation of China(U23A20686)the Key Laboratory of Biomacromolecules,Chinese Academy of Sciences(ZGD-2023-03)+1 种基金the Joint Funds for the Innovation of Science and Technology,Fujian Province(2023Y9226)the Introduced High-Level Talent Team Project of Quanzhou City(2023CT008).
文摘The abundance of molecules on early Earth likely enabled a wide range of prebiotic chemistry,with peptides playing a key role in the development of early life forms and the evolution of metabolic pathways.Among peptides,those with enzyme-like activities occupy a unique position between peptides and enzymes,combining both structural flexibility and catalytic functionality.However,their full potential remains largely untapped.Further exploration of these enzyme-like peptides at the nanoscale could provide valuable insights into modern nanotechnology,biomedicine,and even the origins of life.Hence,this review introduces the groundbreaking concept of“peptide nanozymes(PepNzymes)”,which includes single peptides exhibiting enzyme-like activities,peptide-based nanostructures with enzyme-like activities,and peptide-based nanozymes,thus enabling the investigation of biological phenomena at nanoscale dimensions.Through the rational design of enzyme-like peptides or their assembly with nanostructures and nanozymes,researchers have found or created PepNzymes capable of catalyzing a wide range of reactions.By scrutinizing the interactions between the structures and enzyme-like activities of PepNzymes,we have gained valuable insights into the underlying mechanisms governing enzyme-like activities.Generally,PepNzymes play a crucial role in biological processes by facilitating small-scale enzyme-like reactions,speeding up molecular oxidation-reduction,cleavage,and synthesis reactions,leveraging the functional properties of peptides,and creating a stable microenvironment,among other functions.These discoveries make PepNzymes useful for diagnostics,cellular imaging,antimicrobial therapy,tissue engineering,anti-tumor treatments,and more while pointing out opportunities.Overall,this research provides a significant journey of PepNzymes’potential in various biomedical applications,pushing them towards new advancements.
文摘Erratum to Nano Research 2022,15(2):1554–1563 https://doi.org/10.1007/s12274-021-3701-8 Figure 3(d)in the original paper contained duplicated micrographs(BPQDs+NIR)for different xenografts(B16 vs.CNE-2).This error did not affect any of the conclusions from the published paper.
文摘The authors regret<that the published version of the above article contained an error in Figure 5d,which was not identified during the proofing stage.The Figure 5d has been revised as follow.The authors would like to apologise for any inconvenience caused and state that the correction does not change the scientific conclusions of the article in any way.
基金financially supported by the National Natural Science Foundation of China(31871005,31530026,and 31900981)Chinese Academy of Sciences(YJKYYQ20180048),the Strategic Priority Research Program(XDB29040101)+2 种基金the Key Research Program of Frontier Sciences(QYZDY-SSW-SMC013)Chinese Academy of Sciences and National Key Research and Development Program of China(2017YFA0205501)Youth Innovation Promotion Association CAS(2019093)。
文摘Nanozymes,a type of nanomaterials with enzyme-like activity,have shown great potential to replace natural enzymes in many fields such as biochemical detection,environmental management and disease treatment.However,the catalytic efficiency and substrate specificity of nanozymes still need improvement.To further optimize the enzymatic properties of nanozymes,recent studies have introduced the structural characteristics of natural enzymes into the rational design of nanozymes,either by employing small molecules to mimic the cofactors of natural enzymes to boost nanozymes’catalytic potential,or by simulating the active center of natural enzymes to construct the nanostructure of nanozymes.This review introduces the commonly used bio-inspired strategies to create nanozymes,aiming at clarifying the current progress and bottlenecks.Advances and challenges focusing on the research of bio-inspired nanozymes are outlined to provide ideas for the de novo design of ideal nanozymes.
基金This work was financially supported by the National Key Research and Development Program of China(2016YFB0700800)Key-Area Research and Development Program of Guang Dong Province(2019B010941002)+3 种基金NSFC(82072071,82072073)Fundamental Research Funds for the Central Universities(2682020ZT79)Sichuan Science and Technology Program(2020YJ0009)Young Scientific and Technological Innovation Research Team Funds of Sichuan Province(20CXTD0106).
文摘Adhesive hydrogels have broad applications ranging from tissue engineering to bioelectronics;however,fabricating adhesive hydrogels with multiple functions remains a challenge.In this study,a mussel-inspired tannic acid chelated-Ag(TA-Ag)nanozyme with peroxidase(POD)-like activity was designed by the in situ reduction of ultrasmall Ag nanoparticles(NPs)with TA.The ultrasmall TA-Ag nanozyme exhibited high catalytic activity to induce hydrogel self-setting without external aid.The nanozyme retained abundant phenolic hydroxyl groups and maintained the dynamic redox balance of phenol-quinone,providing the hydrogels with long-term and repeatable adhesiveness,similar to the adhesion of mussels.The phenolic hydroxyl groups also afforded uniform distribution of the nanozyme in the hydrogel network,thereby improving its mechanical properties and conductivity.Furthermore,the nanozyme endowed the hydrogel with antibacterial activity through synergistic effects of the reactive oxygen species generated via POD-like catalytic reactions and the intrinsic bactericidal activity of Ag.Owing to these advantages,the ultrasmall TA-Ag nanozyme-catalyzed hydrogel could be effectively used as an adhesive,antibacterial,and implantable bioelectrode to detect bio-signals,and as a wound dressing to accelerate tissue regeneration while preventing infection.Therefore,this study provides a promising approach for the fabrication of adhesive hydrogel bioelectronics with multiple functions via mussel-inspired nanozyme catalysis.
基金financially supported by the Strategic Priority Research Program(XDB29040101)the National Natural Science Foundation of China(31900981,31871005,31530026)+3 种基金Chinese Academy of Sciences(YJKYYQ20180048)the Key Research Program of Frontier Sciences(QYZDY-SSW-SMC013)Chinese Academy of Sciences and National Key Research and Development Program of China(2017YFA0205200)Youth Innovation Promotion Association CAS(2019093)
文摘Nanozyme,a class of nanomaterials with intrinsic enzymelike properties,is a new concept which has been included in the Encyclopedia of China and the textbook of enzyme engineering.Since the first evidence published in 2007(Gao et al.,2007),great progress has been achieved in the study of nanozyme from new concept,new material to its new application,and it becomes an emerging field bridging nanotechnology and biology(Gao and Yan,2016).
基金supported by the National Natural Science Foundation of China(grant No.81930050,No.82122037,No.31900981)the Strategic Priority Research Program of Chinese Academy of Sciences(CAS)(grant No.XDB29040101)+4 种基金Chinese Academy of Sciences(grant No.YJKYYQ20180048)the Key Research Program of Frontier Sciences,CAS(grant No.QYZDYSSW-SMC013)National Key Research and Development Program of China(grant No.2017YFA0205501)Youth Innovation Promotion Association of Chinese Academy of Sciences(grant No.2019093)CAS Interdisciplinary Innovation Team(grant No.JCTD-2020-08).
文摘Natural enzymes,owing to their outstanding catalytic efficiency and substrate specificity,have been used in a variety of applications including clinical diagnosis,environmental monitoring and wastewater treatment.However,they face inevitable problems such as relatively high cost and lack of stability,dramatically hindering their practical applications in the industry.Recently,a class of nanomaterial that possesses intrinsic enzyme-like properties,nanozyme,has emerged exhibiting numerous advantages over its natural counterpart and has been used as a viable enzyme alternative.In the past decade there are many reviews on nanozyme.The previous discussions tend to view nanozyme as a type of nanomaterial rather than an enzyme.However,it is the enzyme-like activity of nanozymes that provides foundation for their application and nanozymes with the same enzymatic activity usually have some regularity in application.Herein,in this review,we attempt to classify nanozymes by their enzyme-like activity to explain the application principle and relevant cases of nanozymes in clinical diagnosis,environmental monitoring and wastewater treatment,expecting to promote deeper thinking of nanozymes as enzyme mimics and provide useful guidance for future research.
基金supported by the Key Research Program of Frontier Sciences,CAS(grant no.QYZDY-SSWSMC013)the National Natural Science Foundation of China(no.31900981)+2 种基金the Strategic Priority Research Program of CAS(XDB29040101)the CAS Interdisciplinary Innovation Team(JCTD-2020-08)the Youth Innovation Promotion Association of Chinese Academy of Sciences(no.2019093).
文摘CONSPECTUS:Nanozymes,nanomaterials with enzyme-like activities with high structural stability,adjustable catalytic activity,functional diversity,recyclability,and feasibility in large-scale preparation,have become a hot spot in the field of artificial enzymes in recent years and are expected to become potential surrogates and competitors for natural enzymes in practical applications.With the development of in-depth research and a wide range of application requirements,creating nanozymes with catalytic performance comparable to or even surpassing that of natural enzymes has been the key research topic in this field.Most of the nanozymes reported in the past were obtained based on random synthesis and screening,for which the catalytic efficiency is far inferior to that of natural enzymes.Natural enzymes that have evolved over hundreds of millions of years have developed a lot of high-efficiency catalysis know-how hidden in their structural features.To create highly active nanozymes,we assumed that there is a general structure−activity relationship between nanozymes and natural enzymes and proposed the nanozyme optimization strategy by grafting the catalytic principles of natural enzymes into the rational design of nanozymes.On the basis of this bioinspired strategy,a series of nanozymes that exhibit similar catalytic activities that are closer to or even beyond those of natural enzymes have been successfully synthesized.By now,rationally designed high-activity bioinspired nanozymes have become a hot topic in the current research on nanozymes.In this Account,we focus on recent representative research progress in the systemic design and construction of bioinspired nanozymes and are devoted to introducing strategic concepts in the bioinspired optimization of nanozymes.We show that the de novo design of nanozymes by simulating the amino acid microenvironment and using metal-free architecture and the coordination structure of metal active sites in natural enzymes is an effective strategy for significantly improving the catalytic performance of nanozymes.A future perspective of the challenges and countermeasures of bioinspired nanozymes is proposed on the basis of these achievements.We hope that the biologically inspired perception will arouse widespread interest in fundamental research and practical applications as well as provide inspiration for the rational design of nanozymes.
文摘Ferritin, an iron storage protein naturally occurring in the body, has emerged as a promising nanocarrier thanks to its unique architecture, excellent biocompatibility, and ability to self-assemble/disassemble (Fan et al., 2013). More specifically, the finding that human H-ferritin intrinsically targets tumor cells via binding to its receptor transferrin receptor 1 (TfR1) (Li et al., 2010; Fan et al., 2012; Liang et al., 2014; Zhao et al., 2016) inspired research into using ferritins for tumor target therapy.
基金supported by the National Key Research and Development Program of China(Nos.2020YFC1316900 and 2020YFC1316901)China Postdoctoral Science Foundation(Nos.2019T120754 and 2018M633229)+5 种基金Sanming Project of Medicine in Shenzhen(No.SZSM201612031)National Natural Science Foundation of China(Nos.82003303 and 81722024)National Key R&D Program of China(No.2017YFA0205501)Natural Science Foundation of Guangdong Province of China(Nos.2018A030310665 and 2018A0303130295)Shenzhen Science and Technology Innovation Committee(Nos.JSGG20191129144225464,JCYJ20190806163814395,ZDSYS201707281114196,JCYJ20170306091657539,JCYJ-20170413162242627,JCYJ20170306091452714,and GJHZ-20170313172439851)Development and Reform Commission of Shenzhen Municipality(No.S2016005470013).
文摘Nanozymes are nanomaterials with enzyme-like properties that have attracted significant interest owing to their high stability,easy preparation,and tunable catalytic properties,especially in the field of cancer therapy.However,the unfavorable catalytic effects of nanozymes in the acidic tumor microenvironment have limited their applications.Herein,we developed a biomimetic erythrocyte membrane-camouflaged ultrasmall black phosphorus quantum dots(BPQDs)nanozymes that simultaneously exhibited an exceptional near-infrared(NIR)photothermal property and dramatically photothermal-enhanced glucose oxidase(GOx)-like activity in the acidic tumor microenvironment.We demonstrated the engineered BPQDs gave a photothermal conversion efficiency of 28.9%that could rapidly heat the tumor up to 50℃ while effectively localized into tumors via homing peptide iRGD leading after intravenously injection.Meanwhile,the significantly enhanced GOx-like activity of BPQDs under NIR irradiation was capable of catalytical generating massive toxic reactive oxygen species via using cellular glucose.By combining the intrinsic photothermal property and the unique photothermal-enhanced GOx-like catalytic activity,the developed BPQDs were demonstrated to be an effective therapeutic strategy for inhibiting tumor growth in vivo.We believe that this work will provide a novel perspective for the development of nanozymes in tumor catalytic therapy.
基金National Key R&D Program of China (No. 2017YFA0205501)National Natural Science Foundation of China (Nos. 81722024 and 81571728)+1 种基金Key Research of Frontier Sciences (No. QYZDY-SSW-SMC013)Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2014078).
文摘Atherosclerotic plaque rupture results in thrombus formation and vessel occlusion, and is the leading cause of death worldwide. There is a pressi ng need to identify plaque vuln erability for the treatment of carotid and coronary artery diseases. Nano materials with en zyme-like properties have attracted significant interest by providing biological, diagnostic and prognostic information about the diseases. Here we showed that bioe ngin eered mag netoferritin nan oparticles (M-HFn NPs) functionally mimic peroxidase en zyme and can intrin sically recog nize plaque-infiltrated active macrophages, which drive atherosclerotic plaque progression and rupture and are significantly associated with the plaque vulnerability. The M-HFn nanozymes catalyze the oxidation of colorimetric substrates to give a color reaction that visualizes the recognized active macrophages for one-step pathological identification of plaque vulnerability. We examined 50 carotid endarterectomy specimens from patients with symptomatic carotid disease and demonstrated that the M-HFn nanozymes could distinguish active macrophage infiltration in ruptured and high-risk plaque tissues, and M-HFn staining displayed a significant correlation with plaque vulnerability (r= 0.89, P< 0.0001).
基金the National Natural Science Foundation of China(31900981,62027901,and 32000996)the Strategic Priority Research Program of CAS(XDB29040101)+9 种基金CAS Inter-disciplinary Innovation Team(JCTD-2020-08)Chinese Academy of Sci-ences(YJKYYQ20180048)the Key Research Program of Frontier Sciences,CAS(QYZDY-SSW-SMC013)the National Key Research and Development Program of China(2017YFA0205501,2017YFA0205200)Youth Innovation Promotion Association of Chinese Academy of Sciences(2019093)China Postdoctoral Science Foundation(2020M682358)the China Postdoctoral Science Special Foundation(2020TQ0280)the Grant for International Joint Research Project of the Institute of Medical Science,the University of Tokyo(Extension-2019-K3005)the Beijing-Tianjin-Hebei Basic Research Cooperation Special Program(19JCZDJC65300)the CAS Key La-boratory of Mental Health Grant(KLMH2020K02).
文摘Engineered nanocarriers have been widely developed for tumor theranostics.However,the delivery of imaging probes or therapeutic drugs to the tumor pre-formation site for early and accurate detection and therapy remains a major challenge.Here,by using tailor-functionalized human H-ferritin(HFn),we developed a triple-modality nanoprobe IRdye800-M-HFn and achieved the early imaging of tumor cells before the formation of solid tumor tissues.Then,we developed an HFn-doxorubicin(Dox)drug delivery system by loading Dox into the HFn protein cage and achieved early-stage tumor therapy.The intravenous injection of HFn nanoprobes enabled the imaging of tumor cells as early as two days after tumor implantation,and the triple-modality imaging techniques,namely,near-infrared fluorescence molecular imaging(NIR-FMI),magnetic resonance imaging(MRI),and photoacoustic imaging(PAI),ensured the accuracy of detection.Further exploration indicated that HFn could specifically penetrate into pre-solid tumor sites by tumor-associated inflammation-mediated blood vessel leakage,followed by effective accumulation in tumor cells by the specific targeting property of HFn to transferrin receptor 1.Thus,the HFn-Dox drug delivery system delivered Dox into the tumor pre-formation site and effectively killed tumor cells at early stage.IRDye800-M-HFn nanoprobes and HFn-Dox provide promising strategies for early-stage tumor diagnosis and constructive implications for early-stage tumor treatment.