期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于1mm精度路面三维图像的裂缝自动并行识别算法 被引量:9
1
作者 彭博 蒋阳升 +1 位作者 陈成 kelvin c.p.wang 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期1190-1196,共7页
为了快速、准确、完整地识别裂缝,基于1 mm/像素的路面三维图像提出了具有并行结构的裂缝自动识别算法.首先,进行降维处理,分别以像素(0,0)和(4,4)为起点将源图像划分为8×8像素的子块,获得2幅部分重叠的降维图像;然后,基于降维图... 为了快速、准确、完整地识别裂缝,基于1 mm/像素的路面三维图像提出了具有并行结构的裂缝自动识别算法.首先,进行降维处理,分别以像素(0,0)和(4,4)为起点将源图像划分为8×8像素的子块,获得2幅部分重叠的降维图像;然后,基于降维图像进行裂缝种子识别和裂缝连接,形成10个并列的子流程,从而产生10幅初步裂缝图像;最后,对10幅图像进行裂缝融合与滑动窗口去噪处理,获得裂缝图像.测试结果表明:提出的算法具有较高的准确率(平均92.56%)和召回率(平均90.59%),并以90.59%的F值优于Otsu阈值分割及Canny边缘检测算法;该算法的并行结构有利于程序并行化,能有效提高运算速度. 展开更多
关键词 道路工程 识别算法 图像处理 路面裂缝 裂缝融合 裂缝种子
下载PDF
Elements of automated survey of pavements and a 3D methodology 被引量:19
2
作者 kelvin c.p.wang 《Journal of Modern Transportation》 2011年第1期51-57,共7页
Sound transportation infrastructure is critical for economic development and sustainability. Pavement condition is a primary concern among agencies of the roadway infrastructure. Automation has become possible in rece... Sound transportation infrastructure is critical for economic development and sustainability. Pavement condition is a primary concern among agencies of the roadway infrastructure. Automation has become possible in recent years on collecting data and producing results for certain aspects of pavement performance, while challenges remain in several other categories, such as automated cracking survey. This paper reviews the technological advances on automated survey of pavements, and discusses the most recent breakthroughs by the team led by the author in using 3D laser imaging for capturing 1 mm surface images of pavements. 展开更多
关键词 PAVEMENTS automated survey 3D methodology surface images
下载PDF
Automated pavement horizontal curve measurement methods based on inertial measurement unit and 3D profiling data 被引量:8
3
作者 Wenting Luo Lin Li kelvin c.p.wang 《Journal of Traffic and Transportation Engineering(English Edition)》 2016年第2期137-145,共9页
Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditiona... Pavement horizontal curve is designed to serve as a transition between straight segments, and its presence may cause a series of driving-related safety issues to motorists and drivers. As is recognized that traditional methods for curve geometry investigation are time consuming, labor intensive, and inaccurate, this study attempts to develop a method that can automatically conduct horizontal curve identification and measurement at network level. The digital highway data vehicle (DHDV) was utilized for data collection, in which three Euler angles, driving speed, and acceleration of survey vehicle were measured with an inertial measurement unit (IMU). The 3D profiling data used for cross slope calibration was obtained with PaveVision3D Ultra technology at 1 mm resolution. In this study, the curve identification was based on the variation of heading angle, and the curve radius was calculated with ki- nematic method, geometry method, and lateral acceleration method. In order to verify the accuracy of the three methods, the analysis of variance (ANOVA) test was applied by using the control variable of curve radius measured by field test. Based on the measured curve radius, a curve safety analysis model was used to predict the crash rates and safe driving speeds at horizontal curves. Finally, a case study on 4.35 km road segment demonstrated that the proposed method could efficiently conduct network level analysis. 展开更多
关键词 Horizontal curve Inertial measurement unit (IMU) Curve radius Kinematic method Geometry method Lateral acceleration method ANOVA test Curve safety analysis
原文传递
Network level pavement evaluation with 1 mm 3D survey system 被引量:2
4
作者 kelvin c.p.wang Qiang Joshua Li +2 位作者 Guangwei Yang You Zhan Yanjun Qiu 《Journal of Traffic and Transportation Engineering(English Edition)》 2015年第6期391-398,共8页
The latest iteration of PaveVision3D Ultra can obtain true 1 mm resolution 3D data at full- lane coverage in all 3 directions at highway speed up to 60 mph. This paper introduces the PaveVision3D Ultra technology for ... The latest iteration of PaveVision3D Ultra can obtain true 1 mm resolution 3D data at full- lane coverage in all 3 directions at highway speed up to 60 mph. This paper introduces the PaveVision3D Ultra technology for rapid network level pavement survey on approximately 1280 center miles of Oklahoma interstate highways. With sophisticated automated distress analyzer (ADA) software interface, the collected 1 mm 3D data provide Oklahoma Department of Transportation (ODOT) with comprehensive solutions for automated eval- uation of pavement surface including longitudinal profile for roughness, transverse profile for rutting, predicted hydroplaning speed for safety analysis, and cracking and various surface defects for distresses. The pruned exact linear time (PELT) method, an optimal partitioning algorithm, is implemented to identify change points and dynamically deter- mine homogeneous segments so as to assist ODOT effectively using the available 1 mm 3D pavement surface condition data for decision-making. The application of 1 mm 3D laser imaging technology for network survey is unprecedented. This innovative technology allows highway agencies to access its options in using the 1 mm 3D system for its design and management purposes, particularly to meet the data needs for pavement management system (PMS), pavement ME design and highway performance monitoring system (HPMS). 展开更多
关键词 PaveVision3D Ultra Rapid network survey Pavement surface evaluation Dynamic segmentation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部