期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
WPA1 encodes a vWA domain protein that regulates wheat plant architecture 被引量:1
1
作者 Yongxing Chen Huixin Xiao +19 位作者 Yuange Wang Wenling Li Lingchuan Li Lingli Dong Xuebo Zhao Miaomiao Li Ping Lu Huaizhi Zhang Guanghao Guo keyu zhu Beibei Li Lei Dong Peng Chen Shuming Wu Yunbo Jiang Fei Lu Chengguo Yuan Zhiyong Liu Yusheng Zhao Qiuhong Wu 《The Crop Journal》 SCIE CSCD 2024年第4期992-1000,共9页
Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmenta... Plant height,spike,leaf,stem and grain morphologies are key components of plant architecture and related to wheat yield.A wheat(Triticum aestivum L.)mutant,wpa1,displaying temperaturedependent pleiotropic developmental anomalies,was isolated.The WPA1 gene,encoding a von Willebrand factor type A(vWA)domain protein,was located on chromosome arm 7DS and isolated by map-based cloning.The functionality of WPA1 was validated by multiple independent EMS-induced mutants and gene editing.Phylogenetic analysis revealed that WPA1 is monocotyledon-specific in higher plants.The identification of WPA1 provides opportunity to study the temperature regulated wheat development and grain yield. 展开更多
关键词 Wheat plant architecture Map-based cloning VWA Environmental temperature
下载PDF
Wheat powdery mildew resistance gene Pm64 derived from wild emmer (Triticum turgidum var.dicoccoides) is tightly linked in repulsion with stripe rust resistance gene Yr5 被引量:12
2
作者 Deyun Zhang keyu zhu +14 位作者 Lingli Dong Yong Liang Genqiao Li Tilin Fang Guanghao Guo Qiuhong Wu Jingzhong Xie Yongxing Chen Ping Lu Miaomiao Li Huaizhi Zhang Zhenzhong Wang Yan Zhang Qixin Sun Zhiyong Liu 《The Crop Journal》 SCIE CAS CSCD 2019年第6期761-770,共10页
Stripe rust and powdery mildew are both devastating diseases for durum and common wheat.Pyramiding of genes conferring resistance to one or more diseases in a single cultivar is an important breeding approach to provi... Stripe rust and powdery mildew are both devastating diseases for durum and common wheat.Pyramiding of genes conferring resistance to one or more diseases in a single cultivar is an important breeding approach to provide broader spectra of resistances in wheat improvement. A new powdery mildew resistance gene originating from wild emmer(Triticum turgidum var.dicoccoides) backcrossed into common wheat(T. aestivum) line WE35 was identified. It conferred an intermediate level of resistance to Blumeria graminis f. sp. tritici isolate E09 at the seedling stage and a high level of resistance at the adult plant stage. Genetic analysis showed that the powdery mildew resistance in WE35 was controlled by a dominant gene designated Pm64. Bulked segregant analysis(BSA) and molecular mapping indicated that Pm64 was located in chromosome bin 2 BL4-0.50–0.89. Polymorphic markers were developed from the corresponding genomic regions of Chinese Spring wheat and wild emmer accession Zavitan to delimit Pm64 to a 0.55 cM genetic interval between markers WGGBH1364 and WGGBH612, corresponding to a 15 Mb genomic region on Chinese Spring and Zavitan 2 BL, respectively. The genetic linkage map of Pm64 is critical for fine mapping and cloning. Pm64 was completely linked in repulsion with stripe rust resistance gene Yr5. Analysis of a larger segregating population might identify a recombinant line with both genes as a valuable resource in breeding for resistance to powdery mildew and stripe rust. 展开更多
关键词 Blumeria graminis Genetic linkage map Yellow RUST TRITICUM AESTIVUM TRITICUM dicoccoides
下载PDF
Multi-point impact behavior and the relationship between CAI strength and DBIP of PMI foam sandwich structures
3
作者 keyu zhu Xitao ZHENG +2 位作者 Jiaming SUN Guoyue WANG Leilei YAN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第10期265-274,共10页
Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich stru... Sandwich structures are vulnerable to multi-point impacts,and such impacts can result in a reduction in residual strength even catastrophic accident.Therefore,the multi-point impact behaviors of PMI foam sandwich structure are investigated and studied using experimental and numerical coupled methods.Three impact energy levels and five Distances Between Impact Positions(DBIP)are considered in details,and representative impact characteristics are compared to reveal the association between Compression After Impact(CAI)strength and DBIP.Results indicate that the interference between the multi-point impact events has a dominant effect on CAI strength when DBIP is small,and the variation in bending stiffness induced by the boundary effect is the dominant factor affecting CAI strength when DBIP ranges from 20 mm to 60 mm.In addition,matrix damage represents the primary damage mode in multi-point impact,and the calculated ratio of energy absorbed by the top face sheet and honeycomb core,in relation to the total absorbed energy,serves as a clear indicator of the damage severity experienced by both components.This work is enlightening for the structural design of impact-resistant composites. 展开更多
关键词 Multi-point impact Damage mechanism Interference effect CAI strength Numerical method
原文传递
Functional characterization of powdery mildew resistance gene MIIW172,a new Pm60 allele and its allelic variation in wild emmer wheat 被引量:2
4
作者 Qiuhong Wu Yongxing Chen +14 位作者 Beibei Li Jing Li Panpan Zhang Jingzhong Xie Huaizhi Zhang Guanghao Guo Ping Lu Miaomiao Li keyu zhu Wenling Li Tzion Fahima Eviatar Nevo Hongjie Li Lingli Dong Zhiyong Liu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第8期787-795,共9页
Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp... Wild emmer wheat(Triticum dicoccoides,WEW)is an immediate progenitor of both the cultivated tetraploid and hexaploid wheats and it harbors rich genetic diversity against powdery mildew caused by Blumeria graminis f.sp.tritici(Bgt).A powdery mildew resistance gene Ml I^(W172)originated from WEW accession I^(W172)(G-797-M)is fine mapped in a 0.048 centimorgan(c M)genetic interval on 7 AL,corresponding to a genomic region spanning 233 kb,1 Mb and 800 kb in Chinese Spring,WEW Zavitan,and T.urartu G1812,respectively.Ml I^(W172)encodes a typical NLR protein NLRI^(W172)and physically locates in an NBS-LRR gene cluster.NLRI^(W172)is subsequently identified as a new allele of Pm60,and its function is validated by EMS mutagenesis and transgenic complementation.Haplotype analysis of the Pm60 alleles reveals diversifications in sequence variation in the locus and presence and absence variations(PAV)in WEW populations.Four common single nucleotide variations(SNV)are detected between the Pm60 alleles from WEW and T.urartu,indicative of speciation divergence between the two different wheat progenitors.The newly identified Pm60 alleles and haplotypes in WEW are anticipated to be valuable for breeding powdery mildew resistance wheat cultivars via marker-assisted selection. 展开更多
关键词 Blumeria graminis f.sp.tritici Triticum dicoccoides Presence and absence variation Pm60 Allelic variation
原文传递
AN IMPROVED LP MODEL FOR ENERGY OPTIMIZATION OF THE INTEGRATED IRON AND STEEL PLANT WITH A COGENERATION SYSTEM IN CHINA
5
作者 Zhanglin Peng Chao Fu +3 位作者 keyu zhu Qiang Zhang Dawei Ni Shanlin Yang 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2016年第4期515-536,共22页
In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be s... In an integrated iron and steel plant with a cogeneration system, recycled energy is continuously transported into the cogeneration system and the electricity is continuously generated, and both of them could not be stored for a long time. Moreover, thegeneration and consumption of electricity is irregular, which may bring about more unexpected imbalances. Therefore, it is a crucial issue to schedule the entire energy system by optimizing the operation of energy utilization, which includes the raw energy in the production system, the generation electricity in the cogeneration system and the recycled energy in these two systems. In this paper, an improved Linear Programming model for energy optimization in the integrated iron and steel plant with a cogeneration system is established. The improved model focuses on controlling the whole energy flow and scheduling the whole energy consumption in the entire energy system between the production system and cogeneration system through optimizing all kinds of energy distribution and utilization in an integrated iron and steel plant with a cogeneration system. Case study shows that the improved model offers the optimal operation conditions at the higher energy utilization, lower energy cost and lower pollution emissions. 展开更多
关键词 Integrated iron and steel plant energy optimization linear programming recycled energy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部