The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laborato...The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laboratory experiment was conducted under monochromatic,unidirectional incident waves with a large incident angle(30°)on a plane beach with a 1:100 slope in a large wave basin.A charge-coupled device suspended above the basin recorded the dye patch image.The evolution of eddy dye patch was observed and the transport and diffusion were analyzed based on the collected images.Subsequently,a linear instability numerical model was adopted to calculate the perturbation velocity field at the initial stage.The observation and image processing results show that surf zone eddy patches occurred and were separated from the original dye patches.Our numerical analysis results demonstrate that the structure of the perturbation velocity field is consistent with the experimental observations,and that the ejection of eddy patches shoreward or offshore may be ascribed to the double vortex.展开更多
Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simul...Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.展开更多
This study presents an efficient Boussinesq-type wave model accelerated by a single Graphics Processing Unit(GPU).The model uses the hybrid finite volume and finite difference method to solve weakly dispersive and non...This study presents an efficient Boussinesq-type wave model accelerated by a single Graphics Processing Unit(GPU).The model uses the hybrid finite volume and finite difference method to solve weakly dispersive and nonlinear Boussinesq equations in the horizontal plane,enabling the model to have the shock-capturing ability to deal with breaking waves and moving shoreline properly.The code is written in CUDA C.To achieve better performance,the model uses cyclic reduction technique to solve massive tridiagonal linear systems and overlapped tiling/shared memory to reduce global memory access and enhance data reuse.Four numerical tests are conducted to validate the GPU implementation.The performance of the GPU model is evaluated by running a series of numerical simulations on two GPU platforms with different hardware configurations.Compared with the CPU version,the maximum speedup ratios for single-precision and double-precision calculations are 55.56 and 32.57,respectively.展开更多
A numerical scheme based on hybrid central finite-volume and finite-difference method is presented to model Green-Naghdi water wave equations. The governing equations are reformulated into the conservative form, and t...A numerical scheme based on hybrid central finite-volume and finite-difference method is presented to model Green-Naghdi water wave equations. The governing equations are reformulated into the conservative form, and the convective flux is estimated using a Godunov-type finite volume method while the remaining terms are discretized using finite difference method. To enhance the robustness of the model, a central-upwind flux evaluation and a well-balanced non- negative water depth construction are incorporated. Numerical tests demonstrate that present model has the advantages of stability preserving and numerical efficiency.展开更多
基金The open foundation of the State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HESS-2006the Shanxi Province Science Foundation under contract No.202103021224116the research project supported by Shanxi Scholarship Council of China under contract No.2023-067.
文摘The effects of surf zone eddy generated by alongshore currents on the deformation and transport of dye are still poorly understood,and related tracer release experiments are lacking.Therefore,a tracer release laboratory experiment was conducted under monochromatic,unidirectional incident waves with a large incident angle(30°)on a plane beach with a 1:100 slope in a large wave basin.A charge-coupled device suspended above the basin recorded the dye patch image.The evolution of eddy dye patch was observed and the transport and diffusion were analyzed based on the collected images.Subsequently,a linear instability numerical model was adopted to calculate the perturbation velocity field at the initial stage.The observation and image processing results show that surf zone eddy patches occurred and were separated from the original dye patches.Our numerical analysis results demonstrate that the structure of the perturbation velocity field is consistent with the experimental observations,and that the ejection of eddy patches shoreward or offshore may be ascribed to the double vortex.
基金The National Natural Science Foundation under contract Nos 52171247,51779022,52071057,and 51709054.
文摘Accurate simulation of the evolution of freak waves by the wave phase focusing method requires accurate linear and nonlinear properties,especially in deep-water conditions.In this paper,we analyze the ability to simulate deep-water focused waves of a two-layer Boussinesq-type(BT)model,which has been shown to have excellent linear and nonlinear performance.To further improve the numerical accuracy and stability,the internal wavegenerated method is introduced into the two-layer Boussinesq-type model.Firstly,the sensitivity of the numerical results to the grid resolution is analyzed to verify the convergence of the model;secondly,the focused wave propagating in two opposite directions is simulated to prove the symmetry of the numerical results and the feasibility of the internal wave-generated method;thirdly,the limiting focused wave condition is simulated to compare and analyze the wave surface and the horizontal velocity of the profile at the focusing position,which is in good agreement with the measured values.Meanwhile the simulation of focused waves in very deep waters agrees well with the measured values,which further demonstrates the capability of the two-layer BT model in simulating focused waves in deep waters.
基金The National Key Research and Development Program under contract No.2019YFC1407700the National Natural Science Foundation of China under contract Nos 51779022, 52071057 and 51809053。
文摘This study presents an efficient Boussinesq-type wave model accelerated by a single Graphics Processing Unit(GPU).The model uses the hybrid finite volume and finite difference method to solve weakly dispersive and nonlinear Boussinesq equations in the horizontal plane,enabling the model to have the shock-capturing ability to deal with breaking waves and moving shoreline properly.The code is written in CUDA C.To achieve better performance,the model uses cyclic reduction technique to solve massive tridiagonal linear systems and overlapped tiling/shared memory to reduce global memory access and enhance data reuse.Four numerical tests are conducted to validate the GPU implementation.The performance of the GPU model is evaluated by running a series of numerical simulations on two GPU platforms with different hardware configurations.Compared with the CPU version,the maximum speedup ratios for single-precision and double-precision calculations are 55.56 and 32.57,respectively.
文摘A numerical scheme based on hybrid central finite-volume and finite-difference method is presented to model Green-Naghdi water wave equations. The governing equations are reformulated into the conservative form, and the convective flux is estimated using a Godunov-type finite volume method while the remaining terms are discretized using finite difference method. To enhance the robustness of the model, a central-upwind flux evaluation and a well-balanced non- negative water depth construction are incorporated. Numerical tests demonstrate that present model has the advantages of stability preserving and numerical efficiency.