Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_...Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_(3)O_(4)-kerosene,Fe_(3)O_(4)-ethylene glycol,and Fe_(3)O_(4)-engine oil nanofluids inside a lid-driven triangular cavity.In particular,a two-component non-homogeneous nanofluid model is used.The bottom wall of the enclosure is insulated,whereas the inclined wall is kept a constant(cold)temperature and various temperature laws are assumed for the vertical wall,namely:θ=1(Case 1),θ=Yð1YÞ(Case 2),andθ=sinð2-YÞ(Case 3).A tilted magnetic field of uniform strength is also present in the fluid domain.From a numerical point of view,the problem is addressed using the Galerkin weighted residual finite element method.The role played by different parameters is assessed,discussed critically and interpreted from a physical standpoint.We find that a higher aspect ratio can produce an increase in the average Nusselt number.Moreover,the Fe_(3)O_(4)-EO and Fe_(3)O_(4)-H2O nanofluids provide the highest and smallest rate of heat transfer,respectively,for all the considered(three variants of)thermal boundary conditions.展开更多
文摘Nanofluids have enjoyed a widespread use in many technological applications due to their peculiar properties.Numerical simulations are presented about the unsteady behavior of mixed convection of Fe_(3)O_(4)-water,Fe_(3)O_(4)-kerosene,Fe_(3)O_(4)-ethylene glycol,and Fe_(3)O_(4)-engine oil nanofluids inside a lid-driven triangular cavity.In particular,a two-component non-homogeneous nanofluid model is used.The bottom wall of the enclosure is insulated,whereas the inclined wall is kept a constant(cold)temperature and various temperature laws are assumed for the vertical wall,namely:θ=1(Case 1),θ=Yð1YÞ(Case 2),andθ=sinð2-YÞ(Case 3).A tilted magnetic field of uniform strength is also present in the fluid domain.From a numerical point of view,the problem is addressed using the Galerkin weighted residual finite element method.The role played by different parameters is assessed,discussed critically and interpreted from a physical standpoint.We find that a higher aspect ratio can produce an increase in the average Nusselt number.Moreover,the Fe_(3)O_(4)-EO and Fe_(3)O_(4)-H2O nanofluids provide the highest and smallest rate of heat transfer,respectively,for all the considered(three variants of)thermal boundary conditions.