Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcar...Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources.The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential.Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems(IDS).In this regard,since singularmodality is not adequate to attain high detection rate,there is a need exists to merge diverse techniques using decision-based multimodal fusion process.In this view,this research article presents a new multimodal fusion-based IDS to secure the healthcare data using Spark.The proposed model involves decision-based fusion model which has different processes such as initialization,pre-processing,Feature Selection(FS)and multimodal classification for effective detection of intrusions.In FS process,a chaotic Butterfly Optimization(BO)algorithmcalled CBOA is introduced.Though the classic BO algorithm offers effective exploration,it fails in achieving faster convergence.In order to overcome this,i.e.,to improve the convergence rate,this research work modifies the required parameters of BO algorithm using chaos theory.Finally,to detect intrusions,multimodal classifier is applied by incorporating three Deep Learning(DL)-based classification models.Besides,the concepts like Hadoop MapReduce and Spark were also utilized in this study to achieve faster computation of big data in parallel computation platform.To validate the outcome of the presented model,a series of experimentations was performed using the benchmark NSLKDDCup99 Dataset repository.The proposed model demonstrated its effective results on the applied dataset by offering the maximum accuracy of 99.21%,precision of 98.93%and detection rate of 99.59%.The results assured the betterment of the proposed model.展开更多
Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on o...Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively.展开更多
文摘Data fusion is a multidisciplinary research area that involves different domains.It is used to attain minimum detection error probability and maximum reliability with the help of data retrieved from multiple healthcare sources.The generation of huge quantity of data from medical devices resulted in the formation of big data during which data fusion techniques become essential.Securing medical data is a crucial issue of exponentially-pacing computing world and can be achieved by Intrusion Detection Systems(IDS).In this regard,since singularmodality is not adequate to attain high detection rate,there is a need exists to merge diverse techniques using decision-based multimodal fusion process.In this view,this research article presents a new multimodal fusion-based IDS to secure the healthcare data using Spark.The proposed model involves decision-based fusion model which has different processes such as initialization,pre-processing,Feature Selection(FS)and multimodal classification for effective detection of intrusions.In FS process,a chaotic Butterfly Optimization(BO)algorithmcalled CBOA is introduced.Though the classic BO algorithm offers effective exploration,it fails in achieving faster convergence.In order to overcome this,i.e.,to improve the convergence rate,this research work modifies the required parameters of BO algorithm using chaos theory.Finally,to detect intrusions,multimodal classifier is applied by incorporating three Deep Learning(DL)-based classification models.Besides,the concepts like Hadoop MapReduce and Spark were also utilized in this study to achieve faster computation of big data in parallel computation platform.To validate the outcome of the presented model,a series of experimentations was performed using the benchmark NSLKDDCup99 Dataset repository.The proposed model demonstrated its effective results on the applied dataset by offering the maximum accuracy of 99.21%,precision of 98.93%and detection rate of 99.59%.The results assured the betterment of the proposed model.
文摘Diabetic Retinopathy(DR)is a significant blinding disease that poses serious threat to human vision rapidly.Classification and severity grading of DR are difficult processes to accomplish.Traditionally,it depends on ophthalmoscopically-visible symptoms of growing severity,which is then ranked in a stepwise scale from no retinopathy to various levels of DR severity.This paper presents an ensemble of Orthogonal Learning Particle Swarm Optimization(OPSO)algorithm-based Convolutional Neural Network(CNN)Model EOPSO-CNN in order to perform DR detection and grading.The proposed EOPSO-CNN model involves three main processes such as preprocessing,feature extraction,and classification.The proposed model initially involves preprocessing stage which removes the presence of noise in the input image.Then,the watershed algorithm is applied to segment the preprocessed images.Followed by,feature extraction takes place by leveraging EOPSO-CNN model.Finally,the extracted feature vectors are provided to a Decision Tree(DT)classifier to classify the DR images.The study experiments were carried out using Messidor DR Dataset and the results showed an extraordinary performance by the proposed method over compared methods in a considerable way.The simulation outcome offered the maximum classification with accuracy,sensitivity,and specificity values being 98.47%,96.43%,and 99.02%respectively.