Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been pr...Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.展开更多
Owing to the rapidly increasing consumption of fossil fuels,finding clean and reliable new energy sources is of the utmost importance.Thus,developing highly efficient and low-cost catalysts for electrochemical reactio...Owing to the rapidly increasing consumption of fossil fuels,finding clean and reliable new energy sources is of the utmost importance.Thus,developing highly efficient and low-cost catalysts for electrochemical reactions in energy conversion devices is crucial.Single-atom catalysts(SACs)with maximum metal atom utilization efficiency and superior catalytic performance have attracted significant attention,especially for electrochemical reactions.However,because of the highly unsaturated coordination environment,the stability of SACs can be a challenge for practical applications.In this review,we will summarize the strategies to increase the stability of SACs and synthesizing stable SACs,as well as the application of SACs in electrochemical reactions.Finally,we offer a perspective on the development of advanced SACs through rational design and a deeper understanding of SACs with the help of in situ or operando techniques in electrochemical reactions.展开更多
基金supported by the Natural Sciences and Engineering Research Council of Canada(NSERC),Canada Research Chair Program(CRC),Canada Foundation for Innovation(CFI),Ontario Research Fund(ORF),China Automotive Battery Research Institute Co.,Ltd.,Glabat Solid-State Battery Inc.,Canada Light Source(CLS)at the University of Saskatchewan,Interdisciplinary Development Initiatives(IDI)by Western University,and University of Western Ontariothe support from Mitacs Accelerate Program(IT13735)the funding support from Banting Postdoctoral Fel owship(BPF—180162)
文摘Conventional lithium-ion batteries(LIBs)with liquid electrolytes are challenged by their big safety concerns,particularly used in electric vehicles.All-solid-state batteries using solid-state electrolytes have been proposed to significantly improve safety yet are impeded by poor interfacial solid–solid contact and fast interface degradation.As a compromising strategy,in situ solidification has been proposed in recent years to fabricate quasi-solid-state batteries,which have great advantages in constructing intimate interfaces and cost-effective mass manufacturing.In this work,quasi-solid-state pouch cells with high loading electrodes(≥3 m Ah cm^(-2))were fabricated via in situ solidification of poly(ethylene glycol)diacrylate-based polymer electrolytes(PEGDA-PEs).Both single-layer and multilayer quasi-solid-state pouch cells(2.0 Ah)have demonstrated stable electrochemical performance over500 cycles.The superb electrochemical stability is closely related to the formation of robust and compatible interphase,which successfully inhibits interfacial side reactions and prevents interfacial structural degradation.This work demonstrates that in situ solidification is a facile and cost-effective approach to fabricate quasi-solid-state pouch cells with both excellent electrochemical performance and safety.
基金This study was supported by National Sciences and Engineering Research Council of Canada(NSERC)Canada Research Chair Program(CRC)+2 种基金Canada Foundation for Innovation(CFI)the University of Western OntarioJL was supported by the Chinese Scholarship Council.
文摘Owing to the rapidly increasing consumption of fossil fuels,finding clean and reliable new energy sources is of the utmost importance.Thus,developing highly efficient and low-cost catalysts for electrochemical reactions in energy conversion devices is crucial.Single-atom catalysts(SACs)with maximum metal atom utilization efficiency and superior catalytic performance have attracted significant attention,especially for electrochemical reactions.However,because of the highly unsaturated coordination environment,the stability of SACs can be a challenge for practical applications.In this review,we will summarize the strategies to increase the stability of SACs and synthesizing stable SACs,as well as the application of SACs in electrochemical reactions.Finally,we offer a perspective on the development of advanced SACs through rational design and a deeper understanding of SACs with the help of in situ or operando techniques in electrochemical reactions.