To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃...To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.展开更多
Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because o...Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because of the large available Hilbert space.The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions.Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes,including bosonic encoding schemes in quantum information,reliable and efficient measurement techniques,and quantum operations that allow various quantum simulations and quantum computation algorithms.We describe experiments using the vibrational modes,including the preparation of non-classical states,molecular vibronic sampling,and applications in quantum thermodynamics.We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.展开更多
The NOT gate that flips a classical bit is ubiquitous in classical information processing.However its quantum analogue,the universal NOT(UNOT) gate that flips a quantum spin in any alignment into its antipodal counter...The NOT gate that flips a classical bit is ubiquitous in classical information processing.However its quantum analogue,the universal NOT(UNOT) gate that flips a quantum spin in any alignment into its antipodal counterpart is strictly forbidden.Here we explore the connection between this discrepancy and how UNOT gates affect classical and quantum correlations.We show that while a UNOT gate always preserves classical correlations between two spins,it can non-locally increase or decrease their shared discord in ways that allow violation of the data processing inequality.We experimentally illustrate this using a multi-level trapped ^(171)Yb^+ ion that allows simulation of anti-unitary operations.展开更多
基金financially supported by the Korea Institute of Energy Research(KIER)(grant no.C3-2401,2402,2403)the National Research Foundation(grant no.2022M3J1A1063019)funded by the Ministry of Science and ICT
文摘To demonstrate flexible and tandem device applications,a low-temperature Cu_(2)ZnSnSe_(4)(CZTSe)deposition process,combined with efficient alkali doping,was developed.First,high-quality CZTSe films were grown at 480℃by a single co-evaporation,which is applicable to polyimide(PI)substrate.Because of the alkali-free substrate,Na and K alkali doping were systematically studied and optimized to precisely control the alkali distribution in CZTSe.The bulk defect density was significantly reduced by suppression of deep acceptor states after the(NaF+KF)PDTs.Through the low-temperature deposition with(NaF+KF)PDTs,the CZTSe device on glass yields the best efficiency of 8.1%with an improved Voc deficit of 646 mV.The developed deposition technologies have been applied to PI.For the first time,we report the highest efficiency of 6.92%for flexible CZTSe solar cells on PI.Additionally,CZTSe devices were utilized as bottom cells to fabricate four-terminal CZTSe/perovskite tandem cells because of a low bandgap of CZTSe(~1.0 eV)so that the tandem cell yielded an efficiency of 20%.The obtained results show that CZTSe solar cells prepared by a low-temperature process with in-situ alkali doping can be utilized for flexible thin-film solar cells as well as tandem device applications.
文摘Vibrational degrees of freedom in trapped-ion systems have recently been gaining attention as a quantum resource,beyond the role as a mediator for entangling quantum operations on internal degrees of freedom,because of the large available Hilbert space.The vibrational modes can be represented as quantum harmonic oscillators and thus offer a Hilbert space with infinite dimensions.Here we review recent theoretical and experimental progress in the coherent manipulation of the vibrational modes,including bosonic encoding schemes in quantum information,reliable and efficient measurement techniques,and quantum operations that allow various quantum simulations and quantum computation algorithms.We describe experiments using the vibrational modes,including the preparation of non-classical states,molecular vibronic sampling,and applications in quantum thermodynamics.We finally discuss the potential prospects and challenges of trapped-ion vibrational-mode quantum information processing.
基金supported by the National Key Research and Development Program of China(2016YFA0301901)the National Natural Science Foundation of China(11374178 and 11574002)+3 种基金the National Research Foundation of Singapore(NRF Award No.NRF-NRFF2016-02 and project NRF2017-NRFANR004 Van Qu Te)the Competitive Research Programme(CRP Award No.NRF-CRP14-2014-02)the Ministry of Education in Singapore Tier 1 RG190/17the Oxford Martin School
文摘The NOT gate that flips a classical bit is ubiquitous in classical information processing.However its quantum analogue,the universal NOT(UNOT) gate that flips a quantum spin in any alignment into its antipodal counterpart is strictly forbidden.Here we explore the connection between this discrepancy and how UNOT gates affect classical and quantum correlations.We show that while a UNOT gate always preserves classical correlations between two spins,it can non-locally increase or decrease their shared discord in ways that allow violation of the data processing inequality.We experimentally illustrate this using a multi-level trapped ^(171)Yb^+ ion that allows simulation of anti-unitary operations.