This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control ...This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.展开更多
This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process.A reinforcement learning(RL)agent successfully tracks an interface between two liquids...This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process.A reinforcement learning(RL)agent successfully tracks an interface between two liquids,which is often a critical variable to track in many chemical,petrochemical,metallurgical,and oil industries.This method utilizes less than 100 images for creating an environment,from which the agent generates its own data without the need for expert knowledge.Unlike supervised learning(SL)methods that rely on a huge number of parameters,this approach requires far fewer parameters,which naturally reduces its maintenance cost.Besides its frugal nature,the agent is robust to environmental uncertainties such as occlusion,intensity changes,and excessive noise.From a closed-loop control context,an interface location-based deviation is chosen as the optimization goal during training.The methodology showcases RL for real-time object-tracking applications in the oil sands industry.Along with a presentation of the interface tracking problem,this paper provides a detailed review of one of the most effective RL methodologies:actor–critic policy.展开更多
基金supported in part by the Natural Sciences Engineering Research Council of Canada (NSERC)。
文摘This survey paper provides a review and perspective on intermediate and advanced reinforcement learning(RL)techniques in process industries. It offers a holistic approach by covering all levels of the process control hierarchy. The survey paper presents a comprehensive overview of RL algorithms,including fundamental concepts like Markov decision processes and different approaches to RL, such as value-based, policy-based, and actor-critic methods, while also discussing the relationship between classical control and RL. It further reviews the wide-ranging applications of RL in process industries, such as soft sensors, low-level control, high-level control, distributed process control, fault detection and fault tolerant control, optimization,planning, scheduling, and supply chain. The survey paper discusses the limitations and advantages, trends and new applications, and opportunities and future prospects for RL in process industries. Moreover, it highlights the need for a holistic approach in complex systems due to the growing importance of digitalization in the process industries.
文摘This paper synchronizes control theory with computer vision by formalizing object tracking as a sequential decision-making process.A reinforcement learning(RL)agent successfully tracks an interface between two liquids,which is often a critical variable to track in many chemical,petrochemical,metallurgical,and oil industries.This method utilizes less than 100 images for creating an environment,from which the agent generates its own data without the need for expert knowledge.Unlike supervised learning(SL)methods that rely on a huge number of parameters,this approach requires far fewer parameters,which naturally reduces its maintenance cost.Besides its frugal nature,the agent is robust to environmental uncertainties such as occlusion,intensity changes,and excessive noise.From a closed-loop control context,an interface location-based deviation is chosen as the optimization goal during training.The methodology showcases RL for real-time object-tracking applications in the oil sands industry.Along with a presentation of the interface tracking problem,this paper provides a detailed review of one of the most effective RL methodologies:actor–critic policy.